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Abstract

Signal processing methods for the automatic transcription of music are developed in this the-
sis. Music transcription is here understood as the process of analyzing a music signal so as to
write down the parameters of the sounds that occur in it. The applied notation can be the tradi-
tional musical notation or any symbolic representation which gives sufficient information for
performing the piece using the available musical instruments. Recovering the musical notation
automatically for a given acoustic signal alows musicians to reproduce and modify the origi-
nal performance. Another principal application is structured audio coding: a MIDI-like repre-
sentation is extremely compact yet retains the identifiability and characteristics of a piece of
music to an important degree.

The scope of this thesisisin the automatic transcription of the harmonic and melodic parts of
real-world music signals. Detecting or labeling the sounds of percussive instruments (drums) is
not attempted, although the presence of these is allowed in the target signals. Algorithms are
proposed that address two distinct subproblems of music transcription. The main part of the
thesisis dedicated to multiple fundamental frequency (FO) estimation, that is, estimation of the
FOs of several concurrent musical sounds. The other subproblem addressed is musical meter
estimation. This has to do with rhythmic aspects of music and refers to the estimation of the
regular pattern of strong and weak beats in a piece of music.

For multiple-FO estimation, two different algorithms are proposed. Both methods are based on
an iterative approach, where the FO of the most prominent sound is estimated, the sound is can-
celled from the mixture, and the process is repeated for the residual . The first method is derived
in a pragmatic manner and is based on the acoustic properties of musical sound mixtures. For
the estimation stage, an agorithm is proposed which utilizes the frequency relationships of
simultaneous spectral components, without assuming ideal harmonicity. For the cancelling
stage, a new processing principle, spectral smoothness, is proposed as an efficient new mecha-
nism for separating the detected sounds from the mixture signal.

The other method is derived from known properties of the human auditory system. More spe-
cifically, it is assumed that the peripheral parts of hearing can be modelled by a bank of band-
pass filters, followed by half-wave rectification and compression of the subband signals. It is
shown that this basic structure allows the combined use of time-domain periodicity and fre-
guency-domain periodicity for FO extraction. In the derived algorithm, the higher-order (unre-
solved) harmonic partials of a sound are processed collectively, without the need to detect or
estimate individual partials. This has the consequence that the method works reasonably accu-
rately for short analysis frames. Computational efficiency of the method is based on calculat-
ing a frequency-domain approximation of the summary autocorrelation function, a
physiologically-motivated representation of sound.

Both of the proposed multiple-FO estimation methods operate within a single time frame and
arrive at approximately the same error rates. However, the auditorily-motivated method is
superior in short analysis frames. On the other hand, the pragmatically-oriented method is
“complete” in the sense that it includes mechanisms for suppressing additive noise (drums) and
for estimating the number of concurrent sounds in the analyzed signal. In musical interval and
chord identification tasks, both algorithms outperformed the average of ten trained musicians.



For musical meter estimation, a method is proposed which performs meter analysis jointly at
three different time scales. at the temporally atomic tatum pulse level, at the tactus pulse level
which corresponds to the tempo of a piece, and at the musical measure level. Acoustic signals
from arbitrary musical genres are considered. For the initial time-frequency analysis, a new
technique is proposed which measures the degree of musical accent as a function of time at
four different frequency ranges. Thisisfollowed by abank of comb filter resonators which per-
form feature extraction for estimating the periods and phases of the three pulses. The features
are processed by a probabilistic model which represents primitive musical knowledge and per-
forms joint estimation of the tatum, tactus, and measure pulses. The model takes into account
the temporal dependencies between successive estimates and enables both causal and non-
causal estimation. In simulations, the method worked robustly for different types of music and
improved over two state-of-the-art reference methods. Also, the problem of detecting the
beginnings of discrete sound events in acoustic signals, onset detection,is separately discussed.

Keywords—Acoustic signal analysis, music transcription, fundamental frequency estimation,
musical meter estimation, sound onset detection.
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1 Introduction

Transcription of music is here defined as the process of analyzing an acoustic musical signal so
as to write down the parameters of the sounds that constitute the piece of music in question.
Traditionally, written music uses note symbols to indicate the pitch, onset time, and duration of
each sound to be played. The loudness and the applied musical instruments are not specified
for individual notes but are determined for larger parts. An example of the traditional musical
notation is shown in Fig. 1.

In arepresentational sense, music transcription can be seen as transforming an acoustic signal
into a symbolic representation. However, written music is primarily a performance instruction,
rather than a representation of music. It describes music in a language that a musician under-
stands and can use to produce musical sound. From this point of view, music transcription can
be viewed as discovering the “recipe’, or, reverse-engineering the “source code” of a music
signal. The applied notation does not necessarily need to be the traditional musical notation but
any symbolic representation is adequate if it gives sufficient information for performing a piece
using the available musical instruments. A guitar player, for example, often finds it more con-
venient to read chord symbols which characterize the note combinations to be played in amore
general manner. In the case that an electronic synthesizer is used for resynthesis, aMIDI file
Is an example of an appropriate representation.

A musical score does not only allow reproducing a piece of music but also making musically
meaningful modificationsto it. Changes to the symbolsin a score cause meaningful changes to
the music at a high abstraction level. For example, it becomes possible to change the arrange-
ment (i.e., the way of playing and the musical style) and the instrumentation (i.e., to change,
add, or remove instruments) of apiece. The relaxing effect of the sensomotoric exercise of per-
forming and varying good music is quite a different thing than merely passively listening to a
piece of music, as every amateur musician knows. To contribute to this kind of active attitude
to music has been one of the driving motivations of thisthesis.

Other applications of music transcription include

e Structured audio coding. A MIDI-like representation is extremely compact yet retains the
identifiability and characteristics of a piece of music to an important degree. In structured
audio coding, sound source parameters need to be encoded, too, but the bandwidth still
stays around 2—-3 kbit/s (see MPEG-4 document [I1SO99]). An object-based representation is
ableto utilize the fact that music is redundant at many levels.

» Searching musical information based on e.g. the melody of a piece.

* Music analysis. Transcription tools facilitate the analysis of improvised music and the man-

w1
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Figure 1. An excerpt of atraditional muscal notatlon (ascore)

1. Musica Instrument Digital Interface. A standard interface for exchanging performance data and
parameters between electronic musical devices.
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agement of ethnomusicological archives.

* Music remixing by changing the instrumentation, by applying effects to certain parts, or by
selectively extracting certain instruments.

 Interactive music systems which generate an accompaniment to the singing or playing of a
soloist, either off-line or in real-time [Rap0la, Row01].

* Music-related equipment, such as syncronization of light effectsto amusic signal.

A person without a musical education is usually not able to transcribe polyphonic musict, in
which several sounds are playing simultaneously. The richer is the polyphonic complexity of a
musical composition, the more the transcription process requires musical ear training? and
knowledge of the particular musical style and of the playing techniques of the instruments
involved. However, skilled musicians are able to resolve even rich polyphonies with such an
accuracy and flexibility that computational transcription systems fall clearly behind humansin
performance.

Automatic transcription of polyphonic music has been the subject of increasing research inter-
est during the last ten years. Before this, the topic was explored mainly by individual research-
ers. The transcription problem is in many ways analogous to that of automatic speech
recognition, but has not received a comparable academic or commercial interest. Larger-scale
research projects have been undertaken at Stanford University [Moo75,77, Cha82,86a,86b],
University of Michigan [Pis79,86, Ste99], University of Tokyo [Kas93,95], Massachusetts
Institute of Technology [Haw93, Mar96a, 96b], Tampere University of Technology [K1a98,
Ero01, Vii03, Pau03a, Vir03, Ryy04], Cambridge University [HaiO1, Dav03], and University
of London [Bel03, Abd_]. Doctoral theses on the topic have been prepared at |east by Moorer
[Moo75], Piszczalski [Pis86], Maher [Mah89], Mellinger [Mel91], Hawley [Haw93], Gods-
mark [God98], Rossi [Ros98b], Sterian [Ste99], Bello [Bel03], and Hainsworth [Hai01, Hai_].
A more complete review and analysis of the previous work is presented in Chapter 5.

Despite the number of attemps to solve the problem, a practically applicable general-purpose
transcription system does not exist at the present time. The most recent proposals, however,
have achieved a certain degree of accuracy in transcribing limited-complexity polyphonic
music [Kas95, Mar96b, Ste99, Tol00, Dav03, Bel03]. The typical limitations for the target sig-
nals are that the number of concurrent sounds is limited (or, fixed) and the interference of
drums and percussive instruments is not allowed. Also, the relatively high error rate of the sys-
tems has reduced their practical applicability. Some degree of success for real-world music on
CD recordings has been previously demonstrated by Goto [Got01]. His system aims at extract-
ing the melody and the bass lines from complex music signals.

A few commercial transcription systems have been released [AK001, Ara03, Hut97, Inn04,
Mus01, Sev04] (see [Bui04] for amore comprehensive list). However, the accuracy of the pro-
grams has been very limited. Surprisingly, even the transcription of single-voice singing is not
a solved problem, as indicated by the fact that the accuracy of the “voice-input” functionalities
in score-writing programs is not comparable to humans (see [Cla02] for a comparative evalua-
tion of available monophonic transcribers). Tracking the pitch of a monophonic musical pas-

1. Inthiswork, polyphonic refersto asignal where several sounds occur simultaneously. The word mono-
phonic is used to refer to a signal where at most one note is sounding at atime. The terms monaural
signal and stereo signal are used to refer to single-channel and two-channel audio signals, respectively.

2. Theaim of ear training in music isto develop the faculty of discriminating sounds, recognizing musical
intervals, and playing music by ear.



sageis practically a solved problem but quantization of the continuous track of pitch estimates
into note symbols with discrete pitch and timing has turned out to be a very difficult problem
for some target signals, particularly for singing. Efficient use of musical knowledge is neces-
sary in order to “guess’ the score behind a performed pitch track [Vii03, Ryy04]. The general
Idea of an automatic music transcription system was patented in 2001 [Ale01].

1.1 Terminology

Some terms have to be defined before going any further. Pitch is a perceptual attribute of
sounds, defined as the frequency of asine wave that is matched to the target sound in a psycho-
acoustic experiment [Ste75]. If the matching cannot be accomplished consistently by human
listeners, the sound does not have pitch [Har96]. Fundamental frequency is the corresponding
physical term and is defined for periodic or nearly periodic sounds only. For these classes of
sounds, fundamental frequency is defined as the inverse of the period. In ambiguous situations,
the period corresponding to the perceived pitch is chosen.

A melody isaseries of single notes arranged in amusically meaningful succession [Bro93b]. A
chord is a combination of three or more simultaneous notes. A chord can be consonant or dis-
sonant, depending on how harmonious are the pitch intervals between the component notes.
Harmony refers to the part of musical art or science which deals with the formation and rela-
tions of chords [Bro93b]. Harmonic analysis deals with the structure of a piece of music with
regard to the chords of which it consists.

The term musical meter has to do with rhythmic aspects of music. It refers to the regular pat-
tern of strong and weak beats in a piece of music. Perceiving the meter can be characterized as
aprocess of detecting moments of musical stressin an acoustic signal and filtering them so that
underlying periodicities are discovered [Ler83, Cla99]. The perceived periodicities (pulses) at
different time scales together constitute the meter. Meter estimation at a certain time scale is
taking place for example when a person taps foot to music.

Timbre, or, sound colour, is a perceptual attribute which is closely related to the recognition of
sound sources and answers the question “what something sounds like” [Han95]. Timbre is not
explained by any simple acoustic property and the concept is therefore traditionally defined by
exclusion: “timbre is the quality of a sound by which alistener can tell that two sounds of the
same loudness and pitch are dissmilar” [ANS73]. The human timbre perception facility is
very accurate and, consequently, sound synthesis is an important area of music technology
[Roa96, V& 96, Tol98].

1.2 Decomposition of the music transcription problem

Automatic transcription of music comprises a wide area of research. It is useful to structurize
the problem and to decomposing it into smaller and more tracktable subproblems. In this sec-
tion, different strategies for doing this are proposed.

1.2.1 Modularity of music processing in the human brain

The human auditory system is the most reliable acoustic analysis tool in existence. It is there-
fore reasonable to learn from its structure and function as much as possible. Modularity of a
certain kind has been observed in the human brain. In particular, certain parts of music cogni-
tion seem to be functionally and neuro-anatomically isolable from the rest of the auditory cog-

1 INTRODUCTION 3
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Figure 2. Functional modules of the music processing facility in the human brain as pro-
posed by Peretz et al. (after [Per03]; only the parts related to music processing are repro-
duced here). The model has been derived from case studies of specific impairments of
musical abilitiesin brain-damaged patients [Per01, 03]. See text for details.

nition [Per01,03, Zat02, Ter_]. There are two main sources of evidence: studies with brain-
damaged patients and neurological imaging experiments in healthy subjects.

An accidental brain damage at the adult age may selectively affect musical abilities but not e.g.
speech-related abilities, and vice versa. Moreover, studies of brain-damaged patients have
revealed something about the internal structure of the music cognition system. Figure 2 shows
the functional architecture that Peretz and colleagues have derived from case studies of specific
music impairments in brain-damaged patients. The “breakdown pattern” of different patients
was studied by representing them with specific music-cognition tasks, and the model in Fig. 2
was then inferred based on the assumption that a specific impairment may be due to a damaged
processing component (box) or a broken flow of information (arrow) between components.
The detailed line of argument underlying the model can be found in [PerO1].

In Fig. 2, the acoustic analysis module is assumed to be common to all acoustic stimuli (not
just music) and to perform segregation of sound mixtures into distinct sound sources. The sub-
sequent two entities carry out pitch organization and temporal organization. These two are
viewed as parallel and largely independent subsystems, as supported by studies of patients who
suffer from difficulties to deal with pitch variations but not with temporal variations, or vice
versa [Bel99, PerO1]. In music performance or in perception, either of the two can be selec-
tively lost [Per01]. The musical lexicon is characterized by Peretz et al. as containing represen-
tations of all the musical phrases a person has heard during his or her lifetime [Per03]. In some
cases, a patient cannot recognize familiar music but can still process musical information oth-
erwise adequately.



The main weakness of the studies with brain-damaged patients is that they are based on arela-
tively small number of cases. It is more common that an auditory disorder is global in the sense
that it applies for all types of auditory events. The model in Fig. 2, for example, has been
inferred based on approximately thirty patients only. Thisis particularly disturbing because the
model in Fig. 2 corresponds “too well” to what one would predict based on the established tra-
dition in music theory and music analysis [Ler83, Deu99].

Neuroimaging experiments in healthy subjects provide another important source of evidence
concerning the modularity and localization of the cognitive functions. In particular, it isknown
that speech sounds and higher-level speech information are preferentially processed in the left
auditory cortex, whereas musical sounds are preferentially processed in the right auditory cor-
tex. Interestingly, however, when musical tasks involve specifically processing of temporal
information (temporal synchrony or duration), the processing is associated with the left hemi-
sphere [Zat02, Per01]. Also, Bella et a. suggest that in music, pitch organization takes place
primarily in the right hemisphere and the temporal organization recruits more the left auditory
cortex [Bel99]. As concluded both in [Zat02] and in [Ter_], the relative asymmetry between
the two hemispheresis not bound to informational sound content but to the acoustic character-
Istics of the signals. Rapid temporal information is more common in speech, whereas accurate
processing of spectral and pitch information is more important in music.

Zatorre et al. used functional imaging (positron emission tomography) to examine the response
of human auditory cortex to spectral and temporal variation [Zat01]. In the experiment, the
amount of temporal and spectral variation in the acoustic stimulus was parametrized. As a
result, responses to the increase in temporal variation were weighted towards the left, while
responses to the increase in melodic/spectral variation were weighted towards the right. In
[Zat02], the authors review different types of evidence which support the conclusion that there
Is arelative specialization of the auditory cortices in the two hemispheres so that the left audi-
tory cortex is specialized to abetter temporal resolution and the right auditory cortex to a better
spectral resolution. Tervaniemi et al. review additional evidence from imaging experimentsin
healthy adult subjects and come basically to the same conclusion [Ter_].

In computational transcription systems, rhythm and pitch have most often been analyzed sepa-
rately and using different data representations [Kas95, Mar96b, Dav03, Got96,00]. Typically, a
better time resolution is applied in rhythm analysis and a better frequency resolution in pitch
analysis. Based on the above studies, this seemsto be justified and not only atechnical artefact.
The overall structure of transcription systemsis often determined by merely pragmatic consid-
erations. For example, temporal segmentation is performed prior to pitch analysis in order to
allow the sizing and positioning of analysis frames in pitch analysis, which is typicaly the
computationally more demanding stage [Kla01a, Dav03].

1.2.2 Roleof internal models

Large-vocabulary speech recognition systems are critically dependent on language models,
which represent linguistic knowledge about speech signals [Rab93, Jel97, Jur00]. The models
can be of very primitive nature, for example merely tabulating the occurrence probabilities of
different three-word sequences (N-gram models), or more complex, implementing part-of-
speech tagging of words and syntactic inference within sentences.

Musicological information is equally important for the automatic transcription of polyphoni-
cally rich musical material. The probabilities of different notes to occur concurrently or

1 INTRODUCTION 5



sequentially can be straightforwardly estimated, since large databases of written music exist in
an electronic format [Kla03a, Cla04]. More complex rules governing music are readily availa-
ble in the theory of music and composition and some of this information has already been
guantified to computational models [ TemO01].

Thus another way of structurizing the transcription problem is according to the sources of
knowledge available. Pre-stored internal models constitute a source of information in addition
to the incoming acoustic waveform. The uni-directional flow of information in Fig. 2 is not
realistic in this sense but represents a data-driven view where al information flows bottom-up:
information is observed in an acoustic waveform, combined to provide meaningful auditory
cues, and passed to higher level processes for further interpretation. Top-down processing uti-
lizes internal high-level models of the input signals and prior knowledge concerning the prop-
erties and dependencies of the sound events in it [EII96]. In this approach, information also
flows top-down: analysisif performed in order to justify or cause a changein the predictions of
an internal model.

Some transcription systems have applied musicological models or sound source models in the
analysis [Kas95, Mar96b, God99], and some systems would readily enable this by replacing
certain prior distributions by musically informed ones [Got01, Dav03]. Temperley has pro-
posed a very comprehensive rule-based system for modelling the cognition of basic musical
structures, taking an important step towards quantifying the higher-level rules that govern
musical structures [TemO1]. More detailed introduction to the previous work is presented in
Chapter 5.

Utilizing diverse sources of knowledge in the analysis raises the issue of how to integrate the
information meaningfully. In automatic speech recognition, probabilistic methods have been
very successful in this respect [Rab93, Jel97, Jur00]. Statistical methods allow representing
uncertain knowledge and learning from examples. Also, probabilistic models have turned out
to be a very fundamental “common ground” for integrating knowledge from diverse sources.
Thiswill be discussed in Sec. 5.2.3.

1.2.3 Mid-level datarepresentations

Another efficient way of structurizing the transcription problem is through so-called mid-level
representations. Auditory perception may be viewed as a hierarchy of representations from an
acoustic signal up to a conscious percept, such as a comprehended sentence of a language
[EII95,96]. In music transcription, a musical score can be viewed as a high-level representa-
tion. Intermediate abstraction level(s) are indispensable since the symbols of a score are not
readily visible in the acoustic signal (transcription based on the acoustic signal directly has
been done in [Dav03]). Another advantage of using a well-defined mid-level representation is
that it structurizes the system, i.e., acts as an “interface” which separates the task of computing
the mid-level representation from the higher-level inference that follows.

A fundamental mid-level representation in human hearing is the signal in the auditory nerve.
Whereas we know rather little about the exact mechanisms of the brain, there is much wider
consensus about the mechanisms of the physiological and more peripheral parts of hearing.
Moreover, precise auditory models exist which are able to approximate the signal in the audi-
tory nerve [Mo095a]. This is a great advantage, since an important part of the analysis takes
place aready at the peripheral stage.



The mid-level representations of different music transcription systems are reviewed in
Chapter 5 and a summary is presented in Table 7 on page 71. Along with auditory models, a
representation based on sinusoid tracks has been a very popular choice. This reprerentation is
introduced in Sec. 5.2.1. An excellent review of the mid-level representations for audio content
analysis can be found in [EIl95].

1.2.4 How dohumanstranscribe music?

One more approach to structurize the transcription problem is to study the conscious transcrip-
tion process of human musicians and to inquire their transcription strategies. The aim of thisis
to determine the sequence of actions or processing steps that leads to the transcription result.
Also, there are many concrete questions involved. Is a piece processed in one pass or listened
through several times? What is the duration of an elementary audio chunk that is taken into
consideration at atime? And so forth.

Hainsworth has conducted interviews with musicians in order to find out how they transcribe
[Hai02, personal communication]. According to his report, the transcription proceeds sequen-
tially towards increasing detail. First, the global structure of a piece is noted in some form.
This includes an implicit detection of style, instruments present, and rhythmic context. Sec-
ondly, the most dominant melodic phrases and bass lines are transcribed. In the last phase, the
inner parts are examined. These are often heard out only with the help from the context gener-
ated at the earlier stages and by applying the priorly gained musical knowledge of the individ-
ual. Chordal context was often cited to be used as an aid to transcribing the inner parts. This
suggests that harmonic analysis is an early part of the process. About 50% of the respondees
used musical instrument as an aid, mostly as a means of reproducing notes for comparison with
the original (most others were able to do thisin their heads via“ mental rehearsal”).

In [Hai02], Hainsworth points out certain characteristics of the above-described method. First,
the process is sequentia rather than concurrent. Secondly, it relies on the human ability to
attend to certain parts of a sonic spectrum while selectively ignoring others. Thirdly, informa-
tion from the early stages is used to inform later ones. The possibility of feedback from the
later stages to the lower levels should be considered [Hai02].

1.3 Scope and purpose of thethesis

Thisthesis is concerned with the automatic transcription of the harmonic and melodic parts of
real-world music signals. Detecting or labeling the sounds of percussive (drum) instrumentsis
not attempted but an interested reader isreferred to [Pau03a,b, Gou01, Fiz02, Zil02]. However,
the presence of drum instruments is allowed. Also, the number of concurrent sounds is not
restricted. Automatic recognition of musical instruments is not addressed in this thesis but an
interested reader isreferred to [Mar99, Ero00,01, BroO1].

Algorithms are proposed that address two different subproblems of music transcription. The
main part of thisthesisis dedicated to what is considered to be the core of the music transcrip-
tion problem: multiple fundamental frequency (FO) estimation. The term refers to the estima-
tion of the fundamental frequencies of several concurrent musical sounds. This corresponds
most closely to the “acoustic analysis’ module in Fig. 2. Two different algorithms are proposed
for multiple-FO estimation. One is derived from the principles of human auditory perception
and is described in Chapter 4. The other is oriented towards more pragmatic problem solving
and isintroduced in Chapter 6. The latter algorithm has been originally proposed in [P5].
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Musical meter estimation is the other subproblem addressed in this work. This corresponds to
the “meter analysis’ module in Fig. 2. Contrary to the flow of information in Fig. 2, however,
the meter estimation algorithm does not utilize the analysis results of the multiple-FO algo-
rithm. Instead, the meter estimator takes the raw acoustic signal as input and uses a filterbank
emulation to perform time-frequency analysis. Thisis done for two reasons. First, the multiple-
FO estimation algorithm is computationally rather complex whereas meter estimation as such
can be done much faster than in real-time. Secondly, meter estimation benefits of a relatively
good time resolution (23ms Fourier transform frame is used in the filterbank emulation)
whereas multiple-FO estimator works adequately for 46ms frames or longer. The drawbacks of
this basic decision are discussed in Sec. 2.3.

Musical meter estimation and multiple-FO estimation are complementary to each other. The
musical meter estimator generates atemporal framework which can be used to divide the input
signal into musically meaningful temporal segments. Also, musical meter can be used to per-
form time quantization, since musical events can be assumed to begin and end at segment
boundaries. The multiple-FO estimator, in turn, indicates which notes are active at each time
but is not able to decide the exact beginning or end times of individual note events. Imagine a
time-frequency plane where time flows from left to right and different FOs are arranged in
ascending order on the vertical axis. On top of this plane, the multiple-FO estimator produces
horizontal lines which indicate the probabilities of different notes to be active as a function of
time. The meter estimator produces a framework of vertical “grid lines” which can be used to
decide the onset and offset times of discrete note events.

Metrical information can also be utilized in adjusting the positions and lengths of the analysis
frames applied in multiple-FO estimation. This has the practical advantage that multiple-FO
estimation can be performed for a number of discrete segments only and does not need to be
performed in a continuous manner for a larger number of overlapping time frames. Also, by
positioning multiple-FO analysis frames according to metrical boundaries minimizes the inter-
ference from sounds that do not occur concurrently, since event beginnings and ends are likely
to coincide with the metrical boundaries. This strategy was used in producing the transcription
demonstrations available at [KIa03b].

The focus of this thesis is in bottom-up signal analysis methods. Musicological models and
top-down processing are not considered, except that the proposed meter estimation method uti-
lizes some primitive musical knowledge in performing the analysis. Thetitle of thiswork, “sig-
nal processing methods for..”, indicates that the emphasis is laid on the acoustic signal
analysis part. The musicological models are more oriented towards statistical methods [Vii03,
Ryy04], rule-based inference [Tem01], or artificial intelligence techniques [Mar964].

1.3.1 Relation to auditory modeling

A lot of work has been carried out to model the human auditory system [Mo0095a, Zwi99].
Unfortunately, important parts of the human hearing are located in the central nervous system
and can be studied only indirectly. Psychoacoustics is the science that deals with the percep-
tion of sound. In a psychoacoustic experiment, the relationships between an acoustic stimulus
and the resulting subjective sensation is studied by presenting specific tasks or questions to
human listeners [Ros90, Kar99a].

The aim of this thesis is to develop practically applicable solutions to the music transcription
problem and not to propose models of the human auditory system. The proposed methods are



ultimately justified by their practical efficiency and not by their psychoacoustic plausibility or
the ability to model the phenomena in human hearing. The role of auditory modeling in this
work is to help towards the practical goal of solving the transcription problem. At the present
time, the only reliable transcription system we have is the ears and the brain of atrained musi-
cian.

Psychoacoustically motivated methods have turned out to be among the most successful ones
in audio content analysis. This is why the following chapters make an effort to examine the
proposed methods in the light of psychoacoustics. It is often difficult to see what is an impor-
tant processing principle in human hearing and what is merely an unimportant detail. Thus,
departures from psychoacoustic principles are carefully discussed.

It is important to recognize that a musical notation is primarily concerned with the (mechani-
cal) sound production and not with perception. As pointed out by Scheirer in [Sch96], it is not
likely that note symbols would be the representational elements in music perception or that
there would be an innate transcription facility in the brain. The very task of music transcription
differs fundamentally from that of trying the predict the response that the music arises in a
human listener. For the readers interested in the latter problem, the doctoral thesis of Scheirer
Is an excellent starting point [ Sch00].

[ronically, the perceptual intentions of music directly oppose those of its transcription. Breg-
man pays attention to the fact that music often wants the listener to accept smultaneous sounds
as a single coherent sound with its own striking properties. The human auditory system has a
tendency to segregate a sound mixture to the physical sources, but orchestration is often called
upon to oppose these tendencies [Bre90,p.457—-460]. For example, synchronous onset times
and harmonic pitch relations are used to knit together sounds so that they are able to represent
higher-level forms that could not be expressed by the atomic sounds separately. Because the
human perception handles such entities as a single object, music may recruit alarge number of
harmonically related sounds (that are hard to transcribe or separate) without adding too much
complexity to a human listener.

1.4 Main resultsof thethesis

The original contributions of this thesis can be found in Publications [P1]-{P6] and in
Chapter 4 which contains earlier unpublished results. The main results are briefly summarized
below.

1.4.1 Multiple-FO estimation system |

Publications [P1], [P3], and [P5] constitute an entity. Publication [P5] is partially based on the
results derived in [P1] and [P3].

In [P1], a method was proposed to deal with coinciding frequency components in mixture sig-
nals. These are partials of a harmonic sound that coincide in frequency with the partials of
other sounds and thus overlap in the spectrum. The main results were:

* An algorithm was derived that identifies the partials which are the least likely to coincide.

» A weighted order-statistical filter was proposed in order to filter out coinciding partials
when a sound is being observed. The sample selection probabilities of different harmonic
partials were set according to their estimated reliability.

» The method was applied to the transcription of polyphonic piano music.

1 INTRODUCTION 9



In [P3], a processing principle was proposed for finding the FOs and separating the spectra of

concurrent musical sounds. The principle, spectral smoothness, was based on the observation

that the partials of a harmonic sound are usually close to each other in amplitude within one

critical band. In other words, the spectral envelopes of real-world sounds tend to be smooth as

afunction of frequency. The contributions of Publication [P3] are the following.

» Theoretical and empirical evidence was presented to show the importance of the smooth-
ness principle in resolving sound mixtures.

» Sound separation is possible (to a certain degree) without a priori knowledge of the sound
sources involved.

» Based on the known properties of the peripheral hearing in humans [Med91], it was shown
that the spectral smoothing takes a specific form in the human hearing.

» Threeagorithms of varying complexity were described which implement the new principle.

In [P5], a method was proposed for estimating the FOs of concurrent musical sounds within a

single time frame. The method is “complete” in the sense that it included mechanisms for sup-

pressing additive noise (drums) and for estimating the number of concurrent sounds in the ana-

lyzed signal. The main results were:

» Multiple-FO estimation can be performed reasonably accurately (compared with trained
musicians) within a single time frame, without long-term temporal features.

» Thetaken iterative estimation and cancellation approach makes it possible to detect at least
a couple of the most prominent FOs even in rich polyphonies.

» An agorithm was proposed which uses the frequency relationships of simultaneous spectral
components to group them to sound sources. Ideal harmonicity was not assumed.

* A method was proposed for suppressing the noisy signal components due to drums.

* A method was proposed for estimating the number of concurrent sounds in input signals.

1.4.2 Multiple-FO estimation system ||

Publication [P4] and Chapter 4 of this thesis constitute an entity. Computational efficiency of
the method proposed in Chapter 4 isin part based on the resultsin [P4].

Publication [P4] is concerned with a perceptually-motivated representation for sound, called
the summary autocorrelation function (SACF). An agorithm was proposed which calculates
an approximation of the SACF in the frequency domain. The main results were:

» Eachindividual spectral bin of the Fourier transform of the SACF can be computed in O(K)
time, i.e.,, in atime which is proportional to the analysis frame length K, given the complex
Fourier transform of the wideband input signal .

» The number of distinct subbands in calculating the SACF does not need to be defined. The
algorithm implements a model where one subband is centered on each discrete Fourier
spectrum sample, thus approaching a continuous density of subbands (in Chapter 4, for
example, 950 subbands are used). The bandwidths of the subbands need not be changed.

In Chapter 4 of this thesis, a novel multiple-FO estimation method is proposed. The method is

derived from the known properties of the human auditory system. More specificaly, it is

assumed that the peripheral parts of hearing can be modelled by (i) a bank of bandpass filters

and (ii) half-wave rectification (HWR) and compression of the time-domain signals at the sub-

bands. The main results are:

» A practically applicable multiple-FO estimation method is derived. In particular, the method
works reasonably accurately in short analysis frames.
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* It is shown that half-wave rectification at subbands amounts to the combined use of time-
domain periodicity and frequency-domain periodicity for FO extraction.

» Higher-order (unresolved) partias of a harmonic sound can be processed collectively. Esti-
mation or detection of individual higher-order partialsis not robust and should be avoided.

1.4.3 Musical meter estimation and sound onset detection

Publication [P2] proposed a method for onset detection, i.e., for the detection of the beginnings

of discrete sound eventsin acoustic signals. The main contributions were:

* A technique was described to cope with sounds that exhibit onset imperfections, i.e., the
amplitude envel ope of which does not rise monothonically.

» A psychoacoustic model of intensity coding was applied in order to find parameters which
allow robust one-by-one detection of onsets for awide range of input signals.

In [P6], a method for musical-meter analysis was proposed. The anaysis was performed
jointly at three different time scales. at the temporally atomic tatum pulse level, at the tactus
pulse level which corresponds to the tempo of a piece, and at the musical measure level. The
main contributions were:

» The proposed method works robustly for different types of music and improved over two
state-of -the-art reference methods in simulations.

» A technique was proposed for measuring the degree of musical accent as a function of time.
The technique was partially based on theideasin [P2].

» The paper confirmed an earlier result of Scheirer [Sch98] that comb-filter resonators are
suitable for metrical pulse analysis. Four different periodicity estimation methods were
evaluated and, as aresult, comb-filters were the best in terms of simplicity vs. performance.

* Probabilistic models were proposed to encode prior musical knowledge regarding well-
formed musical meters. The models take into account the dependencies between the three
pulse levels and implement temporal tying between successive meter estimates.

1.5 Outlineof thethess

Thisthesisis organized as follows. Chapter 2 considers the musical meter estimation problem.
A review of the previouswork inthisareais presented. Thisisfollowed by ashort introduction
to Publication [P6] where a novel method for meter estimation is proposed. Technical details
and simulation results are not described but can be found in [P6]. A short conclusion is given to
discuss the achieved results and future work.

Chapter 3 introduces harmonic sounds and the different approaches that have been taken to the
estimation of the fundamental frequency of isolated musical sounds. A model of the human
pitch perception is introduced and its benefits from the point of view of FO estimation are dis-
cussed.

Chapter 4 elaborates the pitch model introduced in Chapter 3 and, based on that, proposes a
previously unpublished method for estimating the FOs of multiple concurrent musical sounds.
Also, Chapter 4 presents background material which serves as an introduction to [P4].

Chapter 5 reviews previous approaches to multiple-FO estimation. Because this is the core
problem in music transcription, the chapter can also be seen as an introduction to the potential
approaches to music transcription in general.

Chapter 6 serves as an introduction to the other, problem-solving oriented method for multiple-
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FO estimation. The method has been originally published in [P5] and is*complete” in the sense
that it includes mechanisms for suppressing additive noise and for estimating the number of
concurrent sounds in the input signal. These are needed in order to process real-world music
signals. Introduction to Publications [P1] and [P3] isgiven in Sec. 6.4. An epilogue in Sec. 6.5
presents some criticism of the method.

Chapter 7 summarizes the main conclusions and discusses future work.
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2 Musical meter estimation

This chapter reviews previous work on musical meter estimation and serves as an introduction
to Publication [P6]. The concept musical meter was defined in Sec. 1.1. Meter analysisis an
essential part of understanding music signals and an innate cognitive ability of humans even
without musical education. Virtually anybody is able to clap hands to music and it is not unu-
sual to see atwo-year old child swaying in time with music. From the point of view of music
transcription, meter estimation amounts to temporal segmentation of music according to cer-
tain criteria.

Musical meter isahierarchical structure, consisting of pulse sensations at different levels (time
scales). In thisthesis, three metrical levels are considered. The most prominent level is the tac-
tus, often referred to as the foot tapping rate or the beat. Following the terminology of [Ler83],
we use the word beat to refer to the individual elements that make up a pulse. A musical meter
can be illustrated as in Fig. 3, where the dots denote beats and each sequence of dots corre-
sponds to a particular pulse level. By the period of a pulse we mean the time duration between
successive beats and by phase the time when a beat occurs with respect to the beginning of the
piece. The tatum pulse has its name stemming from “temporal atom” [Bil93]. The period of
this pulse corresponds to the shortest durational values in music that are still more than inci-
dentally encountered. The other durational values, with few exceptions, are integer multiples
of the tatum period and onsets of musical events occur approximately at a tatum beat. The
musical measure pulse is typicaly related to the harmonic change rate or to the length of a
rhythmic pattern. Although sometimes ambiguous, these three metrical levels are relatively
well-defined and span the metrical hierarchy at the aurally most important levels. Tempo of a
piece is defined as the rate of the tactus pulse. In order that a meter would make sense musi-
cally, the pulse periods must be slowly-varying and, moreover, each beat at the larger levels
must coincide with a beat at all the smaller levels.

The concept phenomenal accent is important for meter analysis. Phenomenal accents are
events that give emphasisto amoment in music. Among these are the beginnings of all discrete
sound events, especially the onsets of long pitch events, sudden changes in loudness or timbre,
and harmonic changes. Lerdahl and Jackendoff define the role of phenomenal accents in meter
perception compactly by saying that “the moments of musical stressin the raw signal serve as
cues from which the listener attempts to extrapolate aregular pattern” [Ler83,p.17].

Automatic estimation of the meter alone has several applications. A temporal framework facil-
itates the cut-and-paste operations and editing of music signals. It enables synchronization
with light effects, video, or electronic instruments, such as a drum machine. In a disc jockey
application, metrical information can be used to mark the boundaries of arhythmic loop or to
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Figure 3. A musical signal with three metrical levelsillustrated (reprinted from [P6]).
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synchronize two or more percussive audio tracks. Meter estimation for symbolic (MIDI) data
is required in time quantization, an indispensable subtask of score typesetting from keyboard
input.

2.1 Previouswork

The work on automatic meter analysis originated from agorithmic models which tried to
explain how a human listener arrives at a particular metrical interpretation of a piece, given that
the meter is not explicitly spelled out in music [Lee91]. The early models performed meter
estimation for symbolic data, presented as an artificial impulse pattern or as a musical score
[Ste77, Lon82, LeeB5, Pov85]. In brief, all these models can be seen as being based on a set of
rules that are used to define what makes a musical accent and to infer the most natural meter.
The rule system proposed by Lerdahl and Jackendoff in [Ler83] is the most complete, but is
described in verbal terms only. An extensive comparison of the early models has been given by
Leein[Lee9l], and later augmented by Desain and Honing in [Des99].

Table 1 lists characteristic attributes of more recent meter analysis systems. The systems can
be classified into two main categories according to the type of input they process. Some algo-
rithms are designed for symbolic (MIDI) input whereas others process acoustic signals. The
column, “evaluation material”, gives a more specific idea of the musical material that the sys-
tems have been tested on. Another defining characteristic of different systemsis the aim of the
meter analysis. Many algorithms do not analyze meter at all time scales but at the tactus level
only. Some others produce useful side-information, such as quantization of the onset and offset
times of musical events. The columns “approach”, “mid-level representation” and “computa-
tion” in Table 1 attempt to summarize the technique that is used to achieve the analysis result.
More or less arbitrarily, three different approaches are discerned, one based on a set of rules,
another employing a probabilistic model, and the third deriving the analysis methods mainly
from the signal processing domain. Mid-level representations refer to the data representations
that are used between the input and the final analysis result. The column “computation” sum-
marizes the strategy that is applied to search the correct meter among all possible meters.

2.1.1 Methodsdesigned primarily for symbolic input (MI1DI)

Rosenthal has proposed a system which processes realistic piano performances in the form of
MIDI files. His system attempted to emulate the human rhythm perception, including meter
perception [R0s92]. Notable in his approach is that other auditory functions are taken into
account, too. During a preprocessing stage, notes are grouped into melodic streams and chords,
and thisinformation is utilized later on. Rosenthal applied a set of rulesto rank and prune com-
peting meter hypotheses and conducted a beam search to track multiple hypotheses through
time. The beam-search strategy was originally proposed for pulse tracking by Allen and Dan-
nenberg in [AlI90].

Parncutt has proposed a detailed model of meter perception based on systematic listening tests
[Par94]. His algorithm computes the salience (weigth) of different metrical pulses based on a
guantitative model for phenomenal accents and for pulse salience.

Apart from the rule-based models, a straightforward signal-processing oriented approach was
taken by Brown who performed metrical analysis of musical scores using the autocorrelation
function [Bro93a)]. The scores were represented as a time-domain signal (sampling rate
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Table 1: Characteristics of some meter estimation systems

Reference |Input Aim Approach Mid-level representation Computation Evaluation material
Rosenthal, | MIDI|meter, time| Rule-based, At a preprocessing stage, notes are Multiple-hypothesis tracking 92 piano performances
1992 quantization| model auditory grouped into streams and chords (beam search)
organization
Brown, 1993| score| meter DSP Initialize a signal with zeros, then assign Autocorrelation function 19 classical scores
note-duration values at their onset times (only periods were being estimated)
Large, Kolen,| MIDI| meter DSP Initialize a signal with zeros, then Network of oscillators A few example analyses; straight-
1994 assign unity values at note onsets (period and phase locking) forward to reimplement
Parncutt, |score| meter, Rule-based, |Phenomenal accent model for individual| Match an isochronous pattern to accents Artificial synthesized patterns
1994 accent | based on listen- | events (event parameters: length, loud-
modeling ing tests ness, timbre, pitch)

Temperley, | MIDI| meter, time| Rule-based Apply discrete time-base, assign each | Viterbi; “cost functions” for event occur- | Example analyses; all music types;
Sleator, 1999 quantization| event to the closest 35ms time-frame rence, event length, meter regularity source code available
Dixon, 2001 (MIDI,| tactus Rule-based, MIDI: parameters of MIDI-events.  |First find periods using IOI histogram, then | 222 MIDI files (expressive music);

audio heuristic Audio: compute overall amplitude enve-| phases with multiple-agents (beam search)| 10 audio files (sharp attacks);
lope, then extract onset times source code available
Raphael, [MIDI,|tactus, time| Probabilistic Only onset times are used Viterbi; MAP estimation Two example analyses;
2001 audio |quantization|generative model expressive performances
Cemgil, Kap-| MIDI | tactus, time| Probabilistic Only onset times are used Sequential Monte Carlo methods; balance |216 polyphonic piano performances
pen, 2003 quantization|generative model score complexity vs. tempo continuity | of 12 Beatles songs; clave pattern
Goto, audio| meter DSP Fourier spectra, onset components (time,| Multiple tracking agents (beam search); 85 pieces; pop music;
Muraoka, reliability, frequency range) 101 histogram for periodicity analysis; 4/4 time signature
1995, 1997 pre-stored drum patterns used in (1995)
Scheirer, |audio| tactus DSP Amplitude-envelope signals at six First find periods using a bank of comb | 60 pieces with “strong beat”; all
1998 subbands filters, then phases based on filter states | music types; source code available
Laroche, |audio| tactus, Probabilistic | Compute overall “loudness” curve, then Maximum-likelihood estimation; Qualitative report; music with con-
2001 swing extract onset times and weights exhaustive search stant tempo and sharp attacks
Sethares, |audio| meter DSP RMS-energies at 1/3-octave subbands Periodicity transform A few examples;
Staley, 2001 music with constant tempo
Gouyon |audio| tatum DSP Compute overall amplitude envelope, | First find periods (IOI histogram), then | 57 drum sequences of 2—10 s. in
et al., 2002 then extract onsets times and weights | phases by matching isochronous pattern duration; constant tempo
Klapurietal.,| audio| meter DSP, Degree of accentuation as a function of | First find periods (bank of comb filters, | 474 audio signals; all music types
2003 probabilistic time at four frequency ranges Viterbi back-end), then phases using filter
back-end states and rhythmic pattern matching




200Hz), where each individual note was represented as an impulse at the position of the note
onset time and weighted by the duration of the note. Pitch information was not used. Large and
Kolen associated meter perception with resonance and proposed an “entrainment” oscillator
which adjusts its period and phase to an incoming pattern of impulses, located at the onsets of
musical events[Lar94].

As apart of alarger project of modeling the cognition of basic musical structures, Temperley
and Sleator proposed a meter estimation algorithm for arbitrary MIDI files [Tem99,01]. The
algorithm was based on implementing the preference rules verbally described in [Ler83], and
produced the whole metrical hierarchy as output. Dixon proposed a rule-based system to track
the tactus pulse of expressive MIDI performances [Dix01]. Also, he introduced a simple onset
detector to make the system applicable for audio signals. The methods works quite well for
MIDI files of all types but has problems with audio files which do not contain sharp attacks.
The source codes of both Temperley’s and Dixon's systems are publicly available for testing.

Cemgil and Kappen developed a probabilistic generative model for the event times in expres-
sive musical performances [Cem01, 03]. They used the model to infer a hidden continuous
tempo variable and quantized ideal note onset times from observed noisy onset times in a
MIDI file. Tempo tracking and time quantization were performed simultaneously so as to bal-
ance the smoothness of tempo deviations versus the complexity of the resulting quantized
score. The model is very elegant but has the drawback that it processes only the onset times of
events, ignoring duration, pitch, and loudness information. In many ways similar Bayesian
model has been independently proposed by Raphael who has also demonstrated its use for
acoustic input [Rap01a,b].

2.1.2 Methodsdesigned for acoustic input

Goto and Muraoka were the first to present a meter-tracking system which works to a reasona-
ble accuracy for audio signals [Got95,97a]. Only popular music with 4/4 time signature was
considered. The system operates in real time and is based on an architecture where multiple
agents track alternative meter hypotheses. Beat positions at the larger levels were inferred by
detecting certain drum sounds [Got95] or chord changes [Got97]. Gouyon et al. proposed a
system for estimating the tatum pulse in percussive audio tracks with constant tempo [Gou02].
The authors computed an inter-onset interval histogram and applied the two-way mismatch
method of Maher [Mah94] to find the tatum (“tempora atom”) which best explained multiple
harmonic peaks in the histogram. Laroche used a straightforward probabilistic model to esti-
mate the tempo and swing® of audio signals [Lar01]. Input to the model was provided by an
onset detector which was based on differentiating an estimated “overall loudness’ curve.

Scheirer proposed a method for tracking the tactus pulse of music signals of any kinds, pro-
vided that they had a “strong beat” [Sch98]. Important in Scheirer’s approach was that he did
not detect discrete onsets or sound events as a middle-step, but performed periodicity analysis
directly on the half-wave rectified differentials of subband power envelopes. Periodicity at each
subband was analyzed using a bank of comb-filter resonators. The source codes of Scheirer’s
system are publicly available for testing. Since 1998, an important way to categorize acoustic-
input meter estimators has been to determine whether the systems extract discrete events or

1. Swingisacharacteristic of musical rhythms most commonly found in jazz. Swing isdefined in [Lar01]
as asystematic slight delay of the second and fourth quarter-beats.
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onset times as a middle-step or not. The meter estimator of Sethares and Staley is in many
ways similar to Scheirer’s method, with the difference that a periodicity transform was used for
periodicity analysisinstead of a bank of comb filters [SetO1].

2.1.3 Summary

To summarize, most of the earlier work on meter estimation has concentrated on symbolic
(MIDI) data and typicaly analyzed the tactus pulse only. Some of the systems ([Lar94],
[Dix01], [CemO3], [Rap01b]) can be immediately extended to process audio signals by
employing an onset detector which extracts the beginnings of discrete acoustic events from an
audio signal. Indeed, the authors of [Dix01] and [Rap0l1b] have introduced an onset detector
themselves. Elsewhere, onset detection methods have been proposed that are based on using an
auditory model [Moe97], subband power envelopes [P2], support vector machines [Dav02],
neural networks [Mar02], independent component analysis [Abd03], or complex-domain
unpredictability [Dux03]. However, if a meter estimator has been originally developed for
symbolic data, the extended system is usually not robust to diverse acoustic material (e.g. clas-
sical vs. rock music) and cannot fully utilize the acoustic cues that indicate phenomenal
accentsin music signals.

There are afew basic problems that a meter estimator needs to address to be successful. First,
the degree of musical accentuation as a function of time has to be measured. In the case of
audio input, this has much to do with the initial time-frequency analysis and is closely related
to the problem of onset detection. Some systems measure accentuation in a continuous manner
[Sch98, Set01], whereas others extract discrete events [Got95,97, Gou02, Lar01]. Secondly,
the periods and phases of the underlying metrical pulses have to be estimated. The methods
which detect discrete events as a middle step have often used inter-onset interval histograms
for this purpose [Dix01, Got95,97, Gou02]. Thirdly, a system has to choose the metrical level
which corresponds to the tactus or some other specialy designated pulse level. This may take
place implicitly, or by using a prior distribution for pulse periods [Par94], or by applying rhyth-
mic pattern matching [Got95]. Tempo halving or doubling is a symptom of failing to do this.

2.2 Method proposed in Publication [P6]

The aim of the method proposed in [P6] is to estimate the meter of acoustic musical signals at
three levels: at the tactus, tatum, and measure-pulse levels. The target signals are not restricted
to any particular music type but all the main genres, including classical and jazz music, are rep-
resented in the validation database.

An overview of the method is shown in Fig. 4. For the time-frequency anaysis part, a new
technique is proposed which aims at measuring the degree of accentuation in music signals.
The technique is robust to diverse acoustic material and can be seen as a synthesis and general-
ization of two earlier state-of-the-art methods [Got95] and [Sch98]. In brief, preliminary time-
frequency analysis is conducted using a quite large number b, > 20 of subbands and by meas-
uring the degree of spectral change at these channels. Then, adjacent bands are combined to
arrive at asmaller number 3<c,<5 of “registral accent signals’ for which periodicity analy-
sisis carried out. This approach has the advantage that the frequency resolution suffices to
detect harmonic changes but periodicity analysis takes place at wider bands. Combining a cer-
tain number of adjacent bands prior to the periodicity analysis improves the analysis accuracy.
Interestingly, neither combining all the channels before periodicity analysis, ¢, = 1, nor ana-
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Figure 4. Overview of the meter estimation method. The two intermediate data represen-
tations are registral accent signals v.(n) at band ¢ and metrical pulse strengths s(t, n) for
resonator period T at time n. (Reprinted from [P6].)
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Figure 5. Output energies of comb filter resonators as a function of their feedback delay
(period) 1. The energies are shown for an impulse train with a period-length 24 samples
(left) and for awhite noise signal (right). Upper panels show the raw output energies and
the lower panels the energies after a specific normalization. (Reprinted from [Pg].)

lyzing periodicity at al channels, c, = by, is an optimal choice but using a large number of
bands in the preliminary time-frequency analysis (we used b, = 36) and three or four regis-
tral channels ¢ leadsto the most reliable analysis.

Periodicity analysis of the registral accent signalsis performed using a bank of comb filter res-
onators very similar to those used by Scheirer in [Sch98]. Figure 5 illustrates the energies of
the comb filters as a function of their feedback delay, i.e., period, 1. The energies are shown
for two types of artificial signals, an impulse train and a white-noise signal. It is important to
notice that all resonatorsthat are in rational-number relations to the period of the impulse train
(24 samples) show response to it. Thisturned out to be important for meter analysis. In the case
of an autocorrelation function, for example, only integer multiples of 24 come up and, in order
to achieve the same meter estimation performance, an explicit postprocessing step (“enhanc-
ing”) is necessary where the autocorrelation function is progressively decimated and summed
with the original autocorrelation function.
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Before we ended up using comb filters, four different period estimation algorithms were evalu-
ated: the above-mentioned “enhanced” autocorrelation, enhanced YIN method of de Cheveigné
and Kawahara [deC02], different types of comb-filter resonators [Sch98], and banks of phase-
locking resonators [Lar94]. As an important observation, three out of the four period estima-
tion methods performed equally well after a thorough optimization. This suggests that the key
problems in meter estimation are in measuring phenomenal accentuation and in modeling
higher-level musical knowledge, not in finding exactly the correct period estimator. A bank of
comb filter resonators was chosen because it is the least complex among the three best-per-
forming algorithms.

The comb filters serve as feature extractors for two probabilistic models. One model is used to
estimate the period-lengths of metrical pulses at different levels. The other model is used to
estimate the corresponding phases (see Fig. 4). The probabilistic models encode prior musical
knowledge regarding well-formed musical meters. In brief, the models take into account the
dependencies between different pulse levels (tatum, tactus, and measure) and, additionally,
Implement temporal tying between successive meter estimates. As shown in the eval uation sec-
tion of [Pg], thisleadsto a more reliable and temporally stable meter tracking.

2.3 Resultsand criticism

The method proposed in [P6] is quite successful in estimating the meter of different kinds of
music signals and improved over two state-of-the-art reference methods in simulations. Simi-
larly to human listeners, computational meter estimation was easiest at the tactus pulse level.
For the measure pulse, period estimation can be done equally robustly but estimating the phase
Is less straightforward. This appears to be due to the basic decision that multiple-FO analysis
was not employed prior to the meter analysis. Since the measure pulse is typically related to
the harmonic change rate, FO information could potentially lead to significantly better meter
estimation at the measure-pulse level. For the tatum pulse, in turn, phase estimation does not
represent a problem but deciding the period is difficult both for humans and for the proposed
method.

The critical elements of a meter estimation system appear to be theinitial time-frequency anal-
ysis part which measures musical accentuation as a function of time and the (often implicit)
internal model which represents primitive musical knowledge. The former is needed to provide
robustness for diverse instrumentations in e.g. classical, rock, and electronic music. The latter
Is needed to achieve temporally stable meter tracking and to fill in parts where the meter isonly
faintly implied by the musical surface. A challenge in the latter part is to develop a model
which is generic for various genres, for example for jazz and classical music. The model pro-
posed in [P6] describes sufficiently low-level musical knowledge to generalize over different
genres.
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3 Approachesto single-FO Estimation

There isamultitude of different methods for determining the fundamental frequency of mono-
phonic acoustic signals, especially that of speech signals. Extensive reviews of the earliest
methods can be found in [Rab76, Hes83] and those of the more recent methods in [Hes91,
deC01, Gom03]. Comparative evaluations of different algorithms have been presented in
[Rab76, Hes91, deC01]. Here, it does not make sense to list all the previous methods one-by-
one. Instead, the aim of this chapter is to introduce the main principles upon which different
methods are built and to present an understandable overview of the research area. Multiple-FO
estimators are not reviewed here but this will done separately in Chapter 5. Also, pre/post-
processing mechanisms are not considered but an interested reader is referred to [Hes91,
Tal95, Gom03].

Fundamental frequency is the measurable physical counterpart of pitch. In Sec. 1.1, pitch was
defined as the frequency of a sine wave that is matched to the target sound by human listeners.
Along with loudness, duration, and timbre, pitch is one of the four basic perceptual attributes
used to characterize sound events. The importance of pitch for hearing in general is indicated
by the fact that the auditory system tries to assign a pitch frequency to aimost al kinds of
acoustic signals. Not only sinusoids and periodic signals have a pitch, but even noise signals of
various kinds can be consistently matched with a sinusoid of a certain frequency. For a steeply
lowpass or highpass filtered noise signal, for example, a pitch is heard around the spectral
edge. Amplitude modulating a random noise signal causes a pitch percept corresponding to the
modulating frequency. Also, the sounds of bells, plates, and vibrating membranes have a pitch
although their waveform is not clearly periodic and their spectra do not show a regular struc-
ture. A more complete review of this “zoo of pitch effects’ can be found in [Hou95, Har96].
The auditory system seems to be strongly inclined towards using a single frequency value to
summarize certain aspects of sound events. Computational models of pitch perception attempt
to replicate this phenomenon [Med91a,b, Hou95].

In the case of FO estimation algorithms, the scope hasto be restricted to periodic or nearly peri-
odic sounds, for which the concept fundamental frequency is defined. For many algorithms, the
target signals are further limited to so-called harmonic sounds. These are discussed next.

3.1 Harmonic sounds

Harmonic sounds are here defined as sounds which have a spectral structure where the domi-
nant frequency components are approximately regularly spaced. Figure 6 illustrates a har-
monic sound in the time and frequency domains.
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Figure 6. A harmonic sound illustrated in the time and frequency domains. The example rep-
resents a trumpet sound with fundamental frequency 260Hz and fundamental period 3.8ms.
The Fourier spectrum shows peaks at integer multiples of the fundamental frequency.

3 APPROACHES TO SINGLE-FO ESTIMATION 21



‘\
) 1 5
SIS
v -20
I ¥
£ 40 A
50-60 + ¥
§ _80 L L Il I
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

Figure 7. Spectrum of avibrating piano string (F = 156 Hz). Ideal harmonic locations are
numbered and indicated with “+” marks above the spectrum. The inharmonicity phenome-
non (i.e., non-ideal harmonicity) shifts the 24th harmonic partial to the position of the 25th
ideal harmonic.
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Figure 8. Deviation of the partial frequency f, from the idea (hF), when (3.1) with

F = 100Hz and moderate inharmonicity factor 3 = 0.0004 is used to calculate f,.

For an ideal harmonic sound, the frequencies of the overtone partials (harmonics) are integer
multiples of the FO. In the case of many real-world sound production mechanisms, however,
the partial frequencies are not in exact integral ratios although the general structure of the spec-
trum is similar to that in Fig. 6. For stretched strings, for example, the frequencies of the par-
tials obey the formula

f, = hFJ1+p(h2-1), (3.1)

where F isthe fundamental frequency, h is harmonic index (partial number), and 3 isinharmo-
nicity factor [Fle98, p.363]. Figure 7 shows the spectrum of a vibrating piano string with the
ideal harmonic frequencies indicated above the spectrum. The inharmonicity phenomenon
appears so that the higher-order partials have been shifted upwards in frequency. However, the
structure of the spectrumisin general very similar to that in Fig. 6 and the sound belongs to the
class of harmonic sounds. Here, the inharmonicity is due to the stiffness of real strings which
contributes as a restoring force along with the string tension [Jar01]. As a consequence, the
strings are dispersive, meaning that different frequencies propagate with different velocitiesin
the string. Figure 8 illustrates the deviation of the frequency f,, from theideal harmonic posi-
tion, when a moderate inharmonicity value 3 = 0.0004 is substituted to (3.1).

Figure 9 shows an example of a sound which does not belong to the class of harmonic sounds
although it is nearly periodic in time domain and has a clear pitch. In Western music, mallet
percussion instruments are a case in point: these instruments produce pitched sounds which are
not harmonic. The vibraphone sound in Fig. 9 represents this family of instruments.

The methods proposed in this thesis are mainly concerned with harmonic sounds (not assum-
ing ideal harmonicity, however) and do not operate quite as reliably for nonharmonic sounds,
such as that illustrated in Fig. 9. This limitation is not very severe in Western music, though.
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Figure 9. A vibraphone sound with fundamental frequency 260Hz illustrated in the time
and frequency domains. In the right panel, frequencies of the most dominant spectral com-
ponents are shown in relation to the FO.

Table 2: Western musical instruments which do or do not produce harmonic sounds.

Produced sounds,  Instrument family Instruments involved
String instruments | Piano, guitars, bowed strings (violin etc.)
Reed instruments Clarinets, saxophones, oboe, bassoon

Harmonic Brassinstruments | Trumpet, trombone, tuba, english/french horn
Flutes Flute, bass flute, piccolo, organ
Pipe organs Flue pipes and reed pipes

Human voice (singing) | Voiced phonemes
Mallet percussions | Marimba, xylophone, vibraphone, glockenspiel
Drums Kettle drums, tom-toms, snare drums, cymbals

Not harmonic

Table 2 lists Western musical instruments that do or do not produce harmonic sounds. The
family of mallet percussion instruments is not very commonly used in contemporary music.

3.2 Taxonomy of FO estimation methods

FO estimation algorithms do not only differ in technical details but in regard to the very infor-
mation that the calculations are based on. That is, there is no single obvious way of calculating
the FO of an acoustic signa which is not perfectly periodic and may be presented in back-
ground noise. Another problem is that often the model-level assumptions of the algorithms
have not been explicitly stated, making it difficult to compare different algorithms and to com-
bine their advantages. To this end, some categorization and model-level analysis of various
methods is presented here.

In psychoacoustics, computational models of pitch perception have been traditionally classi-
fied as either place models or temporal models. An excellent introduction to these competing
theories and their supporting evidence can be found in [Har96]. A convincing attempt to unify
the two theories (a “unitary model”) has been presented by Meddis and colleagues in
[Med91a,b, 97].

In the case of practical FO estimation methods, a different categorization is more useful. Algo-
rithms are here grouped to those that look for frequency partials at harmonic spectral locations
and to those that observe spectral intervals (frequency intervals) between partials. The under-
lying idea of both of these categories can be understood by looking at Fig. 6 and isdescribed in
more detail in the next two subsections. Algorithms which measure periodicity of the time-
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domain signal belong to the first category. Algorithms which measure periodicity of the Fou-
rier spectrum belong to the latter category. Algorithms which measure periodicity of the time-
domain amplitude envelope represent a tradeoff between the two classes and are described in
Sec. 3.5. Recent models of human pitch perception are of this kind: both spectral locations and
spectral intervals are important in hearing. In the following, representative variants from each
category are introduced and analyzed in order to describe their properties and advantages.

3.3 Spectral-location type FO estimators

3.3.1 Time-domain periodicity analysis methods

Time-domain autocorrelation function (ACF) based algorithms are among the most frequently
used FO estimators (see e.g. [Bro9l, Tal95]). As pointed out by Tolonen and Karjalainen in
[Tol00], ACF-based FO estimators have close model-level similarities with cepstrum-based FO
estimators [Nol67], and there is a continuum between them. This becomes evident when cal cu-
lating ACF of a time-domain signal x(n) via the discrete Fourier transform (DFT) and its
inverse (IDFT) as

r(t) = IDFT{|DFT[x(n)]|3 . (3.2)

Definition of the cepstrum c(t) of x(n) isvery analogous to (3.2) and is obtained by replacing
the second power with a logarithm function. The difference between the ACF and cepstrum-
based FO estimators is quantitative. Raising the magnitude spectrum to the second power
emphasizes spectral peaks in relation to noise but, on the other hand, further aggravates spec-
tral peculiarities of the target sound. Applying the logarithm function causes the opposite for
both. And indeed, ACF-based FO estimators have been reported to be relatively noise immune
but sensitive to formant structures in speech: especially the first and the strongest formant may
mislead the algorithm [Rab76, Tal95]. On the contrary, cepstrum-based FO estimators perform
relatively poorly in noise, but well for exotic sounds [Rab76]. As atradeoff, Tolonen et al. sug-
gest using a “generalized autocorrelation function” where the second power is replaced with a
real-valued exponent (0.67 in their case) [ Tol00].

Both ACF and cepstrum-based FO detectors are implicit realizations of a model which empha-
sizes frequency partials at harmonic locations of the magnitude spectrum. This can be seen by
writing the ACF in terms of the Fourier spectrum X (k) of aareal-valued input signal as

(1) = % z [COSEZTIT(T%IX(k)IZ] (3.3)
where K is the Iength of the transform frame. The above formula is equivalent to (3.2).
Figure 10 illustrates the calculations in the case when T corresponds to the true period of the
example sound. Squared magnitude-spectrum components are weighted according to their
gpectral locations and then summed. Thus we call ACF and cepstrum-based methods spectral
location type FO estimators.

Recently, a conceptually ssimple and very accurate FO estimation method was proposed by
de Cheveigné and Kawahara in [deC02]. Their algorithm is called “YIN” and is based on the
ACF with certain modifications. The novelty of the method culminates to a specific normaliza-
tion of the autocorrelation function which reduces the number of free parameters instead of
increasing it. In [deCO01], the method was thoroughly evaluated and compared with previous
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Figure 10. Solid lineillustrates the power spectrum of atrumpet sound. Dashed line shows

the weights cos(2mttk/K) of ACF calculation in (3.3) when t corresponds to the funda-
mental period of the example sound. The two curves are displaced vertically for clarity.

methods using a large database of speech signals. The usability of the method for music tran-
scription has been evaluated by usin [Vii03] and in Publication [P5].

Autocorrelation-based methods are closely related to methods which average the absolute dif-
ference between a signal and its delayed version. An interesting generalization over the time-
delay based methods has been recently proposed by Terez who applied state-space embedding
in searching the time delay with which the signal resemblesitself [Ter02].

3.3.2 Harmonic pattern matching in frequency domain

Another way of weighting frequency components according to their spectral locations is to
perform explicit pattern matching in the frequency domain. In [Bro92b], Brown proposed a
method where an input sound is first analyzed by simulating a 1/24th-octave filterbank. This
leads to a spectral representation where the frequency components are logarithmically spaced.
In log-frequency domain, the partials of a harmonic sound have a spacing which isindependent
of the FO of the sound. For example, the distance between the second and the third harmonic
partial is In(3/2) regardless of the FO. As a consequence, FO estimation can be performed by
cross-correlating the vector of filterbank energies with an ideal harmonic pattern where unity
values are assigned to harmonic positions and zeros el sewhere. The maximum of the cross cor-
relation function indicates the position of the fundamental frequency.

A maximum-likelihood spectral pattern matching FO estimator was proposed by Doval and
Rodet in [Dov91, 93]. The authors used a set of sinusoidal partials to represent the spectrum of
an input sound and a FO was then sought for which best explained the observed partials. This
was done in a Bayesian manner so that Gaussian functions centered on each multiple of a
hypothesized FO were used to represent the likelihood of observing the partials given the FO
candidate. Supplementary non-harmonic and noisy spectral components were separately mod-
eled.

Another completely different and interesting spectral pattern matching approach is the two-
way mismatch method of Maher and Beauchamp [Mah94]. In their method, the FO is chosen to
minimize discrepancies between observed frequency components and harmonic frequencies
generated by trial FO values. The first mismatch measure is calculated as an average of the fre-
guency differences between each observed partial and its nearest neighbour among the pre-
dicted harmonic frequencies. This is combined with a mismatch measure calculated by
averaging the frequency differences between each predicted harmonic frequency and its near-
est neighbour among the observed partials.

3 APPROACHES TO SINGLE-FO ESTIMATION 25



3.3.3 A shortcoming of spectral-location type FO estimator s

A major shortcoming of the spectral-location oriented FO estimation methods is that they are
not able to handle non-ideal harmonic sounds appropriately. As described in Sec. 3.1, the par-
tials of real physical vibrators cannot be assumed to be found exactly at harmonic spectrum
positions. The spectrum of a piano sound in Fig. 7 illustrates this situation. Inharmonicity is
not a big concern in speech processing, but isimmediately met when analyzing musical sounds
at awide frequency band. The methods described in the next section are advantageous in this

respect.

3.4 Spectral-interval type FO estimators

The spectrum autocorrelation method and its variants have been successfully used in several
FO estimators (see e.g. [Lah87, Kun96]). The idea is derived from the observation that a peri-
odic but non-sinusoidal signal has a periodic magnitude spectrum, the period of which is the
FO. In its simplest form, the autocorrelation function r(m) over the positive frequencies of a
K-length magnitude spectrum can be calculated as
5 K/2-m-1

r(m) = kZO IX(K)IX (K +m)|. (34)
The information on which the above equation bases FO calculations is fundamentally different
from that of a time-domain ACF or cepstrum-based FO detector. Any two frequency compo-
nents with a certain spectral interval support the corresponding FO. This means that the spec-
trum can be arbitrarily shifted without affecting the output value. Different kinds of
preprocessing can be done for the spectrum before the periodicity analysis. For example,
Kunieda et al. compress the magnitude spectrum with a logarithm function and then remove
the spectral trend by highpass liftering® [Kun96]. Lahat et al. apply a bank of bandpass lifters
prior to the periodicity analysis [Lah87].

Building FO calculations upon the interval s between frequency partials works better for sounds
that exhibit inharmonicities. Even though the intervals do not remain constant, they are more
stable than the locations of the partials, which shift cumulatively, as can be seenin (3.1) and in
Fig. 8.

Another interesting difference between spectral-location and spectral-interval based
approaches is that the former methods are prone to errors in FO halving and the latter to errors
in FO doubling. As an example, consider the time-domain ACF estimator (spectral-location
type method). The time-domain signal is periodic at half the FO rate (twice the fundamental
period) and the harmonic partias of a sound match the locations of even harmonics of a two
times lower sound. In the case of the frequency-domain ACF estimator (spectral-interval type
method), the magnitude spectrum is periodic at double the FO rate but shows no periodicity at
half the FO rate.

1. Liftering refersto the process of convolving the sequence of magnitude-spectrum samples with the
impulse response of the specified filter.
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Figure 11. Reading top-down: (@) asignal containing the harmonics 15-19 of a sound with
FO 220Hz, (b) the signal after half-wave rectification, and (c) the signal after rectification
and lowpass filtering. The response of the lowpassfilter is shown as adashed linein (b).

3.5 “Unitary model” of pitch perception

3.5.1 Periodicity of the time-domain amplitude envelope

In the previous sections, algorithms were introduced which measure the periodicity of the
time-domain signal or the periodicity of the Fourier spectrum. A third, fundamentally different
approach is to measure the periodicity of the time-domain amplitude envelope. Severa suc-
cessful FO estimators are based on this principle, especially those developed in an attempt to
model the human auditory system [Med91a,91b,97, Hou95, Tol00]. The idea is derived from
the observation that any signal with more than one frequency component exhibits periodic fluc-
tuations, beating, in its time-domain amplitude envelope. That is, the partials alternatingly
amplify and cancel each other. The rate of beating depends on the frequency difference
between each two frequency components. In the case of a harmonic sound, the frequency inter-
val corresponding to the FO dominates, and the fundamental beat is visible in the amplitude
envelope of the signal.

Figure 11 illustrates the beating phenomenon for a set of harmonic partials of a sound with a
220Hz fundamental frequency. The amplitude envelope of the signal is obtained by applying
half-wave rectification and lowpass filtering on the signal in time domain. The half-wave recti-
fication operation is defined as

X x=0

HWR(x) = D x<o (3.5)

As can be seen in Fig. 11, the rectification generates spectral components around zero fre-
guency. These represent the spectrum of the amplitude envelope. Then, the amplitude envelope
Is obtained by lowpass filtering the rectified signal. The fundamental period of the signal
(4.5ms) isclearly visible in the resulting signal.
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At first it seems that analyzing the periodicity of the amplitude envelope leads to a spectral-
interval type FO estimator. However, the principle of rectification and lowpass filtering allows
an elegant tradeoff between the spectral-location and spectral-interval typeinformation. Thisis
achieved by tuning the cutoff frequency of the lowpass filter in Fig. 11. If the cutoff frequency
of the lowpassfilter is risen so that the filter passes the spectral components of the original nar-
rowband signal, a subsequent periodicity analysis (ACF computation, for example) utilizes
both spectral-location and spectral-interval information. This is because the spectrum after rec-
tification contains partials at frequencies which correspond to the spectral locations of partials
in the input signal and to the spectral intervals between the partials. In human hearing, atrade-
off between the two types of information is achieved using this kind of representation. Thisis
described in more detail in the following.

3.5.2 Unitary model of pitch perception

Meddis and colleagues have proposed a computational model of human pitch perception where
the periodicity of the amplitude envelope is analyzed at the outputs of a bank of bandpass fil-
ters[Med91a,b, 97]. The roots of the model are in the early work of Licklider [Lic51]. Simula-
tion experiments with the model have shown that this single model (hence the name “unitary™)
is capable of reproducing awide range of phenomenain human pitch perception, thus reconcil-
ing discrepancies between competing psychoacoustic theories (as mentioned in Sec. 3.2). For
convenience, thismodel isreferred to simply as *unitary model” in the following.

The unitary model consists of the following processing steps [Med97]:

1. Anacoustic input signal is passed though abank of bandpass filters which represent the fre-

guency selectivity of the inner ear. The bands (or, channels) are approximately uniformly

distributed on a logarithmic frequency scale. Typically, 40-128 filters with partly overlap-

ping passbands are applied.

The signal at each channel is compressed, half-wave rectified, and lowpass filtered.

3. Periodicity estimation within channels is carried out by calculating short-time autocorrela-
tion functions.

4. The ACF estimates are linearly summed across channels to obtain a summary autocorrela-
tion function (SACF) defined as

S(1) = ) (D) (3.6)

where r, (1) is the autocorrelation function at time t in subband c. The maximum value of
s,(1) istypically used to determine the time delay (lag) which corresponds to the pitch period
attimet.

N

The first two steps of the above algorithm correspond to the peripheral parts of hearing which
produce a signal to the auditory nerve. There is a wide consensus concerning the general prop-
erties of these processing steps because the signal in the auditory nerve can be directly meas-
ured. The steps 3 and 4 are more controversia since they represent processing which takes
place in the central nervous system and is not directly observable. Particularly the use of the
ACF for periodicity estimation has been a subject to criticism since no nervous units have been
found that could implement ACF as such (see e.g. [Har96, p.3498]) and some experimental
evidence contradicts the ACF [Kae98, 01]. The authors themselves admit that the ACF is not
necessarily the exact mechanism that the auditory system uses. In [Med9la, p. 2879], they
write: “The model, therefore, remains neutral on the exact mechanism whereby temporal infor-
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mation is extracted from the activity of the auditory-nervefibers - - -” (activity of the auditory-
nerve fibers is modelled by the amplitude envelopes). The overall processing chain, however,
has been very successful in reproducing phenomenain human hearing and the model therefore
prevails until a better one is found. A viable substitute for ACF has not been found despite
some attempts e.g. in [Bra99, 00].

Envelope periodicity is in practice aways analyzed at subbands and the results are then com-
bined in the end. This applies not only to the unitary pitch model but also to practical FO
extraction methods. It should be noted that analyzing the periodicity of the time-domain signal
itself or the Fourier spectrum at subchannels (and then summing) does not make sense since
thisis equivalent to performing the periodicity analysis directly for the wideband signal.

3.5.3 Attractive propertiesof the unitary model

The unitary model has a number of properties which are particularly attractive from the point
of view of FO estimation. Furthermore, these properties stem aready from the first two (widely
accepted) processing steps which produce the signal traveling in the auditory nerve. Three
properties are discussed in the following.

First, the model provides a psychoacoustically plausible way of weighting the spectral-location
and spectral-interval type information in FO estimation. The half-wave rectification operation
retains the spectral components of the input signal around f.. (center frequency of the bandpass
filter at channel c¢) but, additionally, generates the spectrum of the amplitude envel ope around
zero frequency (in addition, harmonic distortion is generated at integer multiples of f;; thisis
discussed later). The spectrum around f. represent spectral-location type information whereas
the spectral components of the amplitude envel ope correspond to intervals between the partials
in the input signal as described in Sec. 3.5.1. The subsequent ACF computation performs pat-
tern matching on this spectrum, asillustrated in Fig. 10.

The magnitude response of the lowpass filter (illustrated in Fig. 11) determines the balance
between the two types of information. In the unitary model, the lowpass filter is common to all
subbands and is typically designed to pass signal components below about 1kHz and to have a
smooth transition band so that signal components above 1kHz are increasingly attenuated. Asa
consequence, the passband overlaps the passbands of the bandpass filters of the channels below
1kHz.

Secondly, envelope-periodicity models perform implicit spectral smoothing: the amplitude of
the beating caused by each two frequency partials is determined by the smaller of the two
amplitudes. Thisis illustrated in Fig. 12. When the spectrum of a harmonic sound is consid-
ered, each two neighboring harmonics contribute to the beating at the fundamental rate. How-
ever, since the magnitude of the beating is determined by the smaller of the two amplitudes,
individual higher-amplitude harmonic partials are filtered out. The phenomenon is well-known
in human hearing: if one partial of aharmonic sound raises clearly above the other partials, itis
perceptually segregated and stands out as an independent sound [Bre90]. This feature turned
out to be of vital importance in multiple-FO estimation, as described in [P3] and Sec. 6.4.2.

A third property of the envelope periodicity modelsisthat they are phase sensitive in aggregat-
ing the beating caused by each combination of two frequency partials. This is likely to be

advantageous in multiple-FO estimation since the frequency components arising from a same
physical source are sometimes phase-locked to each other. In music, this applies to the brass
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Figure 12. lllustration of the beating caused by two sinusoidal signals. The sinusoids rep-
resent the multiples 5 and 6 of a fundamental F = 100Hz. The lowest curve shows the
linear sum of the two. Note that the magnitude of the beating is according to the smaller-
magnitude sinusoid. The beating frequency is the frequency difference of the two.

and the reed instruments, and to the human voice. However, the usefulness of this feature in
computational multiple-FO estimation has not been empirically validated.

The role of compression in Step 2 of the model amounts to spectral whitening (i.e., spectral
flattening) and generates harmonic distortion components on odd multiples of f.. This will be
discussed in more detail in Sec. 4.1.3. Many authors omit the compression atogether and per-
form spectral whitening as a preprocessing step by inverse linear-prediction filtering [ Tol00],
or, by normalizing the powers of the outputs of the bandpass filterbank [EII96].
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4 Auditory-model based multiple-FO estimator

The aim of this chapter is to investigate how the principles of the unitary pitch model (intro-
duced in Sec. 3.5) can be utilized in practical multiple-FO estimation. A novel method is pro-
posed which estimates the FOs of several concurrent musical sounds in a single time frame.
Computational efficiency of the method is based on the algorithm proposed in [P4]. Accuracy
of the method is based on specific modifications to the unitary model which are originally pro-
posed here.

In Sec. 4.1, a detailed frequency-domain analysis of the unitary pitch model is presented. This
serves as background material for [P4] and paves the way for the algorithm presented in it. In
Sec. 4.2, the auditory-model based multiple-FO estimator is presented. The method is based on
the analysis of the unitary model in Sec. 4.1.

Throughout this chapter it should be kept in mind that our aim is not to propose a model of the
human auditory system (thisissue was discussed in Sec. 1.3.1). The approximations and modi-
fications to be proposed to the unitary model are ultimately justified by the fact that, as aresult,
apractically applicable multiple-FO estimation algorithm is obtained.

4.1 Analysisof theunitary pitch model in frequency domain

The summary autocorrelation function (SACF) of the unitary pitch model has turned out to be
a very useful mid-level representation (see Sec. 1.2.3) in several tasks, such as multiple-FO
estimation, sound separation, and computational auditory scene analysis [deC99, TolQO0,
Wan99, EIl95,96, Ros98a]. However, the computational complexity of calculating the SACF is
rather high, due to the ACF calculations at 40-128 subbands (the number varies in different
implementations). This has limited the usability of the model in practical applications.

In [P4], we have proposed a method for calculating an approximation of the SACF in the fre-
guency domain. Concretely, what the algorithm achieves is to compute one spectral line of the
Fourier transform of the SACF, DFT(s,(1)), in O(K) time, given the complex Fourier spec-
trum of the input sound. Here K is the length of the transform frame and the order-of-growth
notation O(*) is according to the common usage [Cor90]. The individual spectral lines allow
computationally efficient multiple-FO estimation as will be described in Sec. 4.2.

Another thing achieved by the algorithm in [P4] is that it removes the need to define the
number of distinct subbands. The agorithm implements a model where one subband is cen-
tered on each discrete Fourier spectrum sample, thus approaching a continuous density of sub-
bands. The bandwidths of the channels need not be changed. Thisis exactly the opposite to the
approach of Tolonen et al. in [Tol00], where a computationally efficient version of the unitary
pitch model was proposed by reducing the number of subbands to two. Tolonen’s multiple-FO
estimation method is rather successful and has been evaluated in [P5].

The presentation in [P4] is very condensed due to the page limit. In the following, background
material that facilitates the understanding of [P4] is presented. A starting point for the algo-
rithm is to perform the four calculation phases of SACF (see Sec. 3.5) in the frequency
domain. This inevitably leads to frame-based processing. However, this is not a serious prob-
lem, since the ACF calculationsinvolved in the conventional SACF calculations are in practice
always performed on a frame-by-frame basis to allow FFT-based ACF computations ([EII96]
represents an exception).

4 AUDITORY-MODEL BASED MULTIPLE-FO ESTIMATOR 31



In the following, we look at the processing steps of the unitary pitch model in more detail. Par-
ticular emphasisislaid on the first two steps of the unitary model: (i) the bank of bandpass fil-
ters and (ii) compression, rectification, and lowpass filtering at the subbands. As aready
mentioned in the previous chapter, performing the mentioned nonlinear operations at specific
subbands leads to a number of attractive properties from the point of view of multple-FO esti-
mation. Thus, the two steps are studied in depth. Time-domain compression, which was not
discussed in [P4], isincluded here.

4.1.1 Auditory filters (Step 1 of the unitary model)

The cochlea is an organ in the inner ear which transforms sound pressure level variations into
neural impulses in the auditory nerve. Frequency analysis is an essential part of this process.
Frequency components of a complex sound can be perceived separately and are coded inde-
pendently in the auditory nerve (in distinct nerve fibers), provided that their frequency separa-
tion is sufficiently large [M0095b]. The auditory frequency analyzer is usually modeled as a
bank of overlapping, linear, bandpass filters, called auditory filters. Combination of informa-
tion across channels then takes place in the central nervous system.

The concept critical band is closely related to the auditory filters. The term was coined by
Fletcher in 1940 [Fle40]. Fletcher's experiment is illustrated in Figure 13a. He measured the
threshold of detecting a sinusoidal signal in the presence of a bandpass noise masker which
was centered on the signal frequency. The power spectral density of the noise was held con-
stant but the noise bandwidth was varied. Detection threshold increased as a function of the
noise bandwidth, but only up to a certain point. Fletcher labeled this bandwidth a “critical
band” and suggested that the frequency analysis of the inner ear could be modeled with a bank
of bandpass filters (which became to be called auditory filters). Noise components contibute to
masking in proportion to their power at the output of the filter which captures the target signal.

Even later, the auditory filters have been most often studied using the masking phenomenon.
Masking refers to a situation where an audible sound becomes inaudible in the presence of
another, louder sound. In particular, if the distance of two spectral components is less than the
critical bandwidth, one easily masks the other. The situation can be thought of asif the compo-
nents would go to the same auditory filter, to the same “channel” in auditory nerve. If the fre-
guency separation is larger, the components are coded separately and are both audible.

By making certain assumptions about the auditory filters, it is possible to measure the band-
width and the shape of their power response. The notched-noise method as originally sug-
gested by Patterson in [Pat76] is illustrated in Fig. 13b. A wide-band noise signa with a
spectral notch (astopband) is used to mask a sinusoidal tone. The notch is centered on the tone,
and the threshold of detecting the sinusoid as a function of the width of the notch is measured.
Two main assumptions are made. First, that the auditory filter which captures the sinusoidal
signal is centered on the signal frequency and is reasonably symmetric on a linear frequency
scale, and secondly, that masking is due to the part of noise which leaks to the same auditory
channel at the sides. Because the detection threshold level is known be directly proportional to
the masking noise level [Pat86], the amount of noise leaking to the channel and thus the shape
of the auditory filter can be deduced. By placing noise bands on both sides it can be ensured
that the signal is not heard through the neighbouring auditory filters, i.e., by “ off-frequency lis-
tening”.
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Figure 13. (@) Illustration of Fletcher's experiment. See text for details. (b) Idea of the
notched-noise method which has been used to determine the shape of the auditory filter

response (after [Pat76]). In both panels, the power spectral density of the noise is constant
and signal level isvaried.
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Figure 14. Squared magnitude response of the rounded-exponential (roex) filter.

The shape of the auditory filters has been approximated with simple mathematical expressions
that have few free parameters. Patterson et al. have suggested three different formulas [Pat86].
It is convenient to express the formulas in terms of a new frequency variable

f—f,

fo '
where normalization with the center frequency f . facilitates the comparison of filters with dif-
ferent center frequencies. As can be seen, g measures normalized deviation from the center
frequency. The sguared magnitude response of the rounded exponential, roex, filter as sug-
gested in [Pat86] is given by

Wlroen(g) = (1+ plgl)ePlo (4.2)
where p is a parameter which determines the bandwidth of thefilter. The response isillustrated
in Fig. 14. Other models have been proposed, too, but only at the expense of more parameters
for the magnitude response function. In the unitary model, the exact shape of the auditory filter
responseis not critical, therefore it does not make sense to look at the more complex functions.
Themodel in (4.2) is completely sufficient for our purposes and has spread to wide use, largely
because the response can be implemented computationally efficiently using gammatone filters
[SIa93].

The bandwidths of auditory filters can be conveniently expressed using the equivalent rectan-
gular bandwidth (ERB) concept. The ERB of afilter is defined as the bandwidth of a perfect
rectangular filter which has a unity response in its passband and integral over the squared mag-
nitude response which is the same as for the specified filter. Integral over the squared roex
response is obtained by substituting (4.1) to (4.2), integrating over the right half of the
response, and multiplying the result by two:

g = (4.1)
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2[Wlroe9(f)df = 2[[(1+ p(f —f )/ f)ePli-T/ Tqdf = —p‘f. (4.3)
fe fe
Glasberg and Moore measured the ERB values of the auditory filters over a wide range of

center frequencies using the notched noise method [Gla90]. They found that the ERB values
can be described as alinear function of the center frequency as

u(f,) = 24.7[1+4.37f_/1000] (4.4)

where the center frequency and the bandwidth are in hertz units. In the following, we use the
shorthand notation u,, to refer to the ERB value of an auditory filter according to (4.4), and f _
to refer to the corresponding center frequency of the filter.

By setting the ERB valuesin (4.3) and (4.4) equal, the variable p of the roex filters can be cal-
culated as

_Af, A5
p= U_c (4.5)
As aresult, the response of aroex filter at a given center frequency is fully determined.

The center frequencies of the filters in the auditory filterbank are typically assumed to be uni-
formly distributed on a critical-band scale. This frequency-related scale is derived by integrat-
ing the inverse of (4.4) which yields

e(f) = 21.4log,,(4.37f/1000 + 1). (4.6)

In the above expression, f is frequency in hertz and e(f) gives the critical-band scale. Intui-
tively, this means that the auditory filters are more densely distributed at the low frequencies
where the ERB values are smaller. More exactly, the power responses of the filters sum to aflat
response over the whole range of center frequencies. When f varies between 20Hz and 20kHz
(the hearing range), e( f) varies between 0.8 and 42. Intuitively, this means that approximately
41 critical bands (auditory filters) would fit to the range of hearing if the passbands of the audi-
tory filters were non-overlapping and rectangular in shape.

4.1.2 Flatted exponential filters

The algorithm in [P4] has been derived for a certain family of filters called flatted-exponential,
flex, filters. The shape of the response of these filters differs somewhat from that of rounded-
exponential filters. From the point of view of the unitary pitch model, however, the exact shape
of the response is not critical, but the important characteristics of the auditory filters are that
they are approximately uniformly distributed on the critical band scale given by (4.6), that the
bandwidths are according to (4.4), and that the number of filters is large enough to make the
passbands of adjacent filters overlap significantly.

Three requirements suffice to fully define the response of the flatted-exponential filters. (i) The
filtersimplement aflat (unity) response around the center frequency of the filter. (ii) The slope
of attenuation further away from the center frequency is defined to be the same as the asymp-
totic attenuation of the rounded-exponential filters. The attenuation of the roex filters follows
the slope e P9 further away from the center frequency, since the factor (1 + plg|) in (4.2)
becomes insignificant for large values of |g| . (iii) The ERB value of the filters is defined to be
the same as that of the corresponding roex filter, i.e., according to (4.4).
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Figure 15. Solid line shows the squared magnitude response of the flatted-exponential
(flex) filter. Dashed line shows the response of the rounded-exponential (roex) filter

The flatted-exponential filter responseisillustrated in Fig. 15 and can be written as

M lal < 9o
W(flex) -
@ = Dopl-pld-go)] I >0,

where the frequency variable g isas defined in (4.1) and the variable p = 4f _/u, stemsfrom
the requirement (ii) above.

(4.7)

The parameter g, i.e., the half-width of the flatted top can be determined by requiring that the
ERB-bandwidths of flex and roex filters must be equal for a given parameter p:

[oe] 00

[ W (g)dg = [ Wroed(g)dg (48)

Integral over the squared flex response is obtained by integrating piecewise over the right half
and multiplying by two. The above equation becomes

9o 00 (o]
2[1dg+2[[exp[-p(g—gp)lldg = 2[(1+ pg)ePodg (4.9)
0 Jo 0

and by integrating

2 _ 4
20~ + = = = 4.10
Y b D (4.10)
from which we obtain g, = 1/ p. Theflex filter in (4.7) can now be written as
<1/
W(flex)(g) = Sl gl P (4.12)

cexp(-plgl + 1) g >1/p
In terms of frequency variable f this becomes (ssmply substitute p from (4.5) and g from (4.1)):

nt |f—f<u/4
_Eexp[—4|f—fc|/uc+1] |f—f>u/4
Please note that (4.12) gives the squared magnitude response of the flex filter. In the following,
we use the shorthand notation W, (f) Ow(fe)(f, f) for the above power response and
H.(k) to refer to the corresponding discrete magnitude response of a flex filter at center fre-

quency f; and with the ERB bandwidth u; according to (4.4). That is, a bank of flatted-expo-
nential bandpass filters will be applied in the unitary-model in the following.

Lp(ﬂex)(fo f) (4.12)
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4.1.3 Compression and half-waverectification at subbands (Step 2 of the unitary model)

In the unitary pitch model as originally described in [Med91a,b], the output of each auditory
filter was processed by a hair-cell model. In human hearing, when a sound enters the inner ear,
it travels as a pressure wave within the cochlea. Hair cells are the elements which transform the
resulting mechanical movement to neural impulses. The hair-cell model used in [Med91a,b]
was a dynamic system described in terms of differential equations [Med86]. However, as later
pointed out by the authors, the hair cells in the unitary pitch model can equally well be mod-
eled as a cascade of compression, half-wave rectification, and lowpass filtering [Med97] (see
aso [Med914], p. 2869). This approach is followed here. In some previous implementations,
the compression has been omitted (see e.g. [EII96, Tol00]). This can be done if the task of the
compression is carried out by some other means of preprocessing.

In the following, compression and half-wave rectification are each discussed separately. These
are thought of as a cascade, where full-wave vi-law compression is performed first and thisis
followed by rectification.

Full-wave (odd) Vil aw compression (FWOC) is defined to have the transfer characteristic

v >0
FWOC(x) = % X X '
(—x)V x<0
where v> 0. This specific form of compression is employed here because it matches suffi-
ciently well the measured compression in hair cells (see [Med86]) and because it is analyti-
cally tractable and numerically safe.

(4.13)

What happens in the frequency domain when a narrowband signal is compressed as above? As
anonlinear operation, FWOC of course does not have a “frequency response”. However, con-
sider a narrowband input x(t) = A(t)cos(w.t + @(t)), where f. = w./ 21 is the center fre-
guency of the spectral band and A(t) = 0. Here “narrowband” means that the bandwidth of
X(t) issmall compared to f . This, in turn, implies that the variations of A(t) and ¢(t) are
slow compared to those of cos(w,t) . For such asignal, the output y(t) of afull-wave Vil aw
compressor can be expressed as [Dav87]

[0e]

y(t) = Z 2C(v, m)[A(t)]Vcos[ mw,t + ma(t)] , (4.19)
m=1
(m odd)
where the coefficient C(v, m) is
C(v, m) = rv+1) —, (4.15)
v m-— m

and I (x) isthe Gamma function. That is, the output of the Vil aw compressor consists of a
signal at the frequency of the input narrowband signal and at the odd multiples of it. The enve-
lope of each of these is modulated by the vth-power of the input envelope and the m™ harmonic
is phase-modulated by m times the input phase modul ation.

The expression in (4.14) applies reasonably accurately for the subband signals at the outputs of
the auditory filterbank. The subband signals are sufficiently narrowband to satisfy the assump-
tionsfor all except few lowest channels. That is, the subband signals can be imagined as having
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been modulated to their center frequencies. We denote by x.(n) the time-domain signal at the
output of an auditory filter centered on frequency f .. The discrete Fourier transform of this
signal is denoted by

X.(K) = DFT[x.(n)] (4.16)
and the discrete Fourier transform of the vi™-law compressed signal is denoted by

X(comp)(k) = DFT[x.(n)Y]. (4.17)
At the passband of the auditory filter, the Fourier spectrum of the compressed signal can be
approximated as

X (comp) (k) =y X,(K) , when kfe/K—fg|<ue. (4.18)
Here y. isascalar, K isthe transform length, and f is the sampling rate. The approximation
gets less accurate when v gets very small (v<0.3) or large (v > 3) values but, for moderate
compression levels used here (0.3<v<1), the approximation is sufficiently accurate. The
scaling factor y, can be calculated from (4.14) as

Yo = 2C(v, 1)(0.4/2)V 7Y, (4.19)
where 0, is the standard deviation of the subband signal and o+/2 is the amplitude of a vir-
tual “carrier” sinusoidal signal which has the standard deviation o.. The approximation in
(4.18)—4.19) can be straightforwardly verified experimentally.

At the passband of the auditory filter, the scaling factor in (4.19) tends to normalize the stand-
ard deviation of the subband signal towards unity when v <1. In this sense, the compression
can be omitted if the sound spectrum is appropriately preprocessed (whitened) before the audi-
tory filterbank. This has been done e.g. in [Tol0Q]. Ellis, in turn, took the approach of normal-
izing the outputs of the auditory filters by their energies [EII96, p.77]. The distortion spectrum
at odd multiples of f_ could be accurately modeled, too, but this will not be done in the fol-
lowing. At moderate compression levels, the magnitude of these is small compared to the pass-
band of the auditory filter and, furthermore, the subsequent lowpass filter eliminates much of
the distortion spectrum. Thus it is seen as not having an important role in the unitary pitch
model.

In the following, the scaling of subbands according to (4.18) is seen purely and smply as a
psychoacoustically inspired way of performing spectral whitening. The fact that the model was
derived from time-domain vi-law compression is not so important. The presented form of
spectral whitening is convenient because it provides a single parameter with which to deter-
mine the degree of applied whitening. Also, interestingly, when v in (4.19) gets very small val-
ues, the spectrum due to scaling with y . at subbands does not approach a white spectrum, but
rather, a pink spectrum. This is because the standard deviations o, are measured at critical
bands which are approximately logarithmically spaced and have bandwidths which are linearly
proportional to the center frequency. For these reasons, spectral whitening according to (4.18)
Is considered to be advantageous over e.g. inverse linear-prediction filtering.

The non-linear half-wave rectification (HWR) operation, as defined in (3.5), is a core part of
the unitary model. In [Dav87] it has been shown that for an input zero-mean gaussian random
process X(t), an approximate expression for the power spectral density pr( f) of the output
y(t) = HWR(x(t)) of the half-wave rectifier can be written as
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Figure 16. Power spectrum of a half-wave rectified narrowband signal which is centered
on frequency f. and has a bandwidth B (after [Dav87]).
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where W (f) isthe power spectral density of the input and &( f) is the unit impulse function.
The approximation involved in the above expression is that higher-order convolution terms
have been omitted due to their small powers. As shown in [Dav87], this leads to an error in the
output variance which is less than 3%.

Figure 16 illustrates the magnitude spectrum of the output of the half-wave rectifier in the case
that the input process has a narrow-band rectangular spectrum. (It should be noted that (4.20)
does not assume a narrowband signal although these are of interest here.) For a narrowband
signal x.(n) centered on f;, the output spectrum consists of a dc-component, of the original
power spectrum scaled down by four, and of a convolution of the original power spectrum by
itself which produces spectral components centered on zero-frequency and twice the input
center frequency. In principle, HWR generates spectral components also to bands centered on
all integer multiples of f. without upper limit, but the other bands are very small in power
[Dav87].

In the unitary pitch model, phases play an important role and therefore the approximation
derived for the power spectral densities in (4.20) is not sufficient. In terms of complex-valued
discrete Fourier spectra, the approximation becomes the following®. Let

X(Kk) = z:_ 1X(n)e—i2n(n—1)k/K (4.21)
be the short-time Fourier transform of time-domain signal x(n) before rectification and
W(K) = 3 HWR[x(n)] e-2n-Dk/K (4.22)

be the short-time Fourier transform of the rectified time-domain signal. We use W(k) to
denote an approximation of the spectrum W(K) . The approximation becomes

K72-k
A Ox 1 1
W(k) = —=8(k) +5X(k X(HX(k=1), 4.23
(k) J%(HZ ()+0xJ8_’T.:_KZ/2+k (DX (k=1) (4.23)

where o, isthe standard deviation of the time-domain signal x(n) before rectifi cation®.

In the present context, the signals of interest are composed of a limited number of sinusoidal

1. Deriving these approximationsis rather straightforward, although not trivial, based on the standard
analysesin [Dav87]. An interested reader is referred to Chapter 12 in the cited book.
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components and do not satisfy the gaussianity assumption very well. Despite that, the approxi-
mation in (4.23) turned out to be quite accurate, as can be easily verified experimentally. Cer-
tain complications arise, however, if the time-domain signal x(n) is windowed prior to the
rectification. This is because time-domain windowing violates the stationarity assumption of
the model. The problem can be easily circumvented by performing windowing as a convolu-
tion in the frequency domain after computing W(K) . That is, W(K) is convolved with the Fou-
rier spectrum of the window function. (In the time domain, thisis achieved simply by applying
windowing as usual when computing the term (1/2)X(k) in (4.23) but using the square root
of the window function to obtain X'(k) whichisused inthe place of X(k) for the convolution
term in (4.23). These technical details are relatively unimportant from the point of view of the
analysis here.)

Let x.(n) be the time-domain signal at the output of an auditory filter centered on frequency
f.. According to (4.23), the complex spectrum of x.(n) after rectification can be approxi-
mated by

" o
Wo(k) = —S5(K) + 21X (K) + K 4.24
c(k) Jﬁ() X.(K) CJ_() (4.24)
where we have denoted the convolution term
K/2—-k
Vo) = 5 Xe(DX(k=1) (4.25)
| =—K/2+k

for convenience. An unbiased estimate of the standard deviation o, of x.(n) isobtained based
on V (k) as

= JV(0)/(K-1), (4.26)
since V.(0) givesthe power of the signal x.(n) at channel c.
Spectral whitening according to (4.18)—4.19) can be included by writing

¥é
0./8T

where the scaling factors y. at different channels can be calculated by substituting o, to
(4.19). Weighting the last term by the square of y. stems from the definition of V (k) in
(4.25).

After compression and half-wave rectification, the subband signals are lowpass filtered, as
mentioned in the beginning of this subsection. Traditionally, a fixed lowpass filter H, 5(k) is
used for all different channels and, in addition, the dc-component of the subband signals is
removed. More exactly, the filter typically implements a bandpass response with a-3dB cutoff
frequencies around 60Hz and 1.0kHz. As a consequence, the dc-term in (4.27) can be omitted
and the spectrum at the output of channel ¢ can be expressed as

We(k) = DC_Cé(k) —Xc(k)+ V. (k), (4.27)

2. Atfirst, the convolution termsin (4.20) and (4.23) may appear as contradictory. However, it has to be
remembered that these are merely approximations. The latter approximation is more precise among the
two.
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4.1.4 Periodicity estimation and across-channel summing (Steps 3 and 4 of the unitary
model)

The autocorrelation function (ACF) is equal to the inverse Fourier transform of the power spec-

trum. Thus the Fourier transform R.(k) of the autocorrelation function r(t) at subband c is
obtained as

2

y2 O

H (k)%x (k) + ——=V_.(k)J .

LP Dz c A/8_T[ c 5

c

R.(k) = (4.29)

In practice, the spectra X (k) and V (k) are non-overlapping at all except few lowest chan-
nels and (4.29) can be approximated by

y2 2

Hp(K)—= Py
This approximation is valid at channels above about 150Hz but, since we are not interested in
reproducing al the nuances and artefacts of the unitary pitch model, we use it at al channels.
Also, from the point of view of harmonic sounds, the lowest channels usually do not contain

more than one significant frequency component, in which case the magnitude of V (k) isvery
small for k # 0 (see (4.25)).

Summary autocorrelation function s(t) is calculated by summing the within-channel ACF esti-
mates as given by (3.6). Since Fourier transform and its inverse are linear operations, we can
sum R, (k) already in the frequency domain to obtain the Fourier transform of (1),

K = ¥ R (4:31)

and then perform a single inverse Fourier transform to obtain the summary autocorrelation
function s(T).

V(K] - (4.30)

R,(K) = ‘H

Using the approximation in (4.30), the two terms can be squared and summed separately. It fol-
lows that (4.31) can be approximated by

2

(4.32)

I"| c(k)

S(k) = [Hp(K)

The bandpass filters are typically designed so that the|r power responses sum to unity, as men-
tioned around (4.6). In this case Z 1Xc(K)|? = [X(k)|? and, because y, is slowly-varying as
afunction of c, the above formula can be written as

y2 2

|HLP(k)|ZZC Py

where y, isthe compression-modeling scaling factor corresponding to the frequency bin k. A
good approximation of y, is obtained by computing the standard deviation of the subband sig-
nal at the band centered on the frequency bin k and by substituting this value to (4.19). The
algorithm presented in [P4] computes V(0) in O(K) time for all channels ¢ with center fre-

S(k) = |H V(K] (4.33)

40



quencies f. = (1,2, ...,K/2)f /K, thus the standard deviations needed to compute y, are
in practice really available. The spectra X (k) do not need to be calculated at all.

In the discussion to follow, it will be convenient to denote

X(k) = yk (4.34)

V(k) = C(k) (4.35)
and to express S(k) in two parts as

8(k) = [HLp(K|(X(K) + V(K)). (4.36)

Note that X (k) is the whitened power spectrum of the input wideband signal.

Finaly, the inverse Fourier transform is used to obtain an approximation of the summary
autocorrelation function 5(1) as

5(1) = IDFT(S(K)). (4.37)
Because IDFT isalinear operation, also 5(1) can be decomposed into two terms as

8(1) = 5(1) +5,(1), (4.38)
where

§(1) = IDFT(|HLP(k)|2>_((k)), (4.39)

$,(1) = IDFT(|H p(k)|?V(K)). (4.40)

As described around Fig. 10 on page 25, the IDFT performs implicit pattern matching on the
power spectrum. In (4.39), pattern matching is performed on harmonic locations of the (whit-
ened) power spectrum |X(k)|2 of the input wide-band signal, similarly to the conventional
ACF (seeFig. 10). In (4.40), pattern matching is performed on V (k) which isthe across-chan-
nel sum of the power spectra of the amplitude envelopes of the subband signals. The envelope
spectra contain frequency components which correspond to the frequency intervalsin the orig-
inal spectrum. This was described in Sec. 3.5.1 and is explicitly visible in the definition of
V.(k) in (4.25).

Thus the two types of information, spectral-location information (5,(t)) and spectral-interval
information (S,(t)) can be kept (approximately) separate until the very end, and can be accu-
mulated separately across bands.

The summary autocorrelation function value 5(t) represents the weight of a period candidate
T, or, the strength of the pitch sensation for pitch period candidate 1 . The lag corresponding to
the maximum of 5(t) istypically considered as the pitch period.

In the above discussion, V (k) has been referred to as the amplitude-envelope spectrum at
subband c. In addition to that, however, V (K) contains the distortion spectrum centered on
frequency 2f ., and the IDFT operation in (4.40) collects frequency components from both
bands. Figure 17 shows an example of the power spectrum |Vc(k)|2 for an artificial subchan-

1. Inprinciple, Y, should be computed as a weighted average of several Y. inthe vicinity of k but in
practice the differenceis negligible.
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Figure 17. Left: Power spectrum |Xc(k)|2 of an artificial subband signal with 100Hz fun-
damental frequency. Center frequency of the auditory filter is f.=500Hz and, for simplic-
ity, a rectangular response is used as the auditory filter. Right: Power spectrum |V (n)|?
(defined in (4.25)) corresponding to the power spectrum on the | eft.

nel signal, the power spectrum of which is shown in the left panel.

There are reasons to believe that the distortion spectrum centered on 2f . does not play any
significant role in the unitary model and therefore does not deserve a more detailed analysis.
First, the lowpass filter H| p(K) attenuates the distortion spectrum at channels for which
f.>500Hz. As will be described in Sec. 4.2, these higher channels are the most important for
the envelope-related term S,(T) because their bandwidth is wider and they typically contain
more dense sets of frequency partials. Secondly, the channels below 500Hz contain only har-
monic partials whose harmonic index /4 (see (3.1)) is small (1< h< 10 even for low-pitched
sounds). For these partials, significant inharmonicity is not observed, and therefore the spec-
trum centered on 2f_ consists of frequency components at ideal harmonic position as in
Fig. 17. In this case, the IDFT pattern-matcher picks the generated spectral peaks both around
zero frequency and around 2f ., and the role of the distortion spectrum on 2f . is merely quan-
titative: to emphasize the information which is already represented by the band around zero
frequency. The situation would be more complicated if significant inharmonicity would be
observed at the lower channels because, in this case, the peaks around 2f . would not occur at
harmonic locations and IDFT would not “match”.

4.15 Algorithm proposed in [P4]

Publication [P4] is concerned with the term V (k) which consists of the sum of the envelope
spectra V (k) at different channels as seen in (4.35). Each spectrum V (k) , in turn, is calcu-
lated by convolving the subband spectrum X (k) with itself according to (4.25). Thus, it is
easy to see that calculating V (k) is computationally demanding for a large number of sub-
bands.

The algorithm proposed in [P4] computes V (k) for afixed k and for all channels c with center
frequencies f_. = (1,2,...,K/2)f/K in atime which is linearly proportional to K (trans-
from length), when given the wideband Fourier spectrum X(k) asinput. This means that each
frequency binin V (k) can be computed in O(K) time, given the spectrum X (k) . As mentioned
in the beginning of this chapter, this has consequences which lead to a computationally effi-
cient unitary-model based FO estimator.

The basic idea of the algorithm described in [P4] is to compute an estimate of V., ;(k) or
V._41(k) based on V (k) in constant time (O(1)), with few arithmetic operations. Thus we
only need to initidize V (k) for c = 1 or ¢ = K/2 and then iteratively calculate V (k) for
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Figure 18. The thick curves in the two panels illustrate the two basic types of the con-

volved response J. (l) given by (4.44). The two responses H(l) and H (k—I) are

shown with dotted and dashed lines, respectively.

al channels ¢ by using the update rules proposed in [P4]. As aresults, we obtain one spectral
line of V(K). The update rules were given for the family of flatted-exponential, flex, filters but
similar rules could be derived for any filter with a magnitude response which is piecewise rep-
resentable with exponential functions (o, exp(a,f + a3)) asisthe case with the flex filter in
(4.12).

As adtarting point for deriving the update rules, X (k) is decomposed as

X (K) = H(k)X(k) (4.41)
where H (k) isthe response of the flex filter centered at f.. Now (4.25) can be written as

K/2-k
V.(Kk) = Z H.(DX(MH(k=DX(k-1I). (4.42)
| =-K/2+k
In the above equation, the convolution spectrum for a given k,
Z(1) = X(NX(k=1I) (4.43)
iscommon to all c. Thisisfiltered with a varying convolved response
Jo, (1) = He(DH (k=1). (4.44)

As illustrated in Figure 18, the convolved response can be of two basic types, depending on
whether the flatted tops of the two flex responses overlap or not. However, both types consist of
five parts (A-E in Fig. 18) which are of the form of an exponential function a,exp(a,f +aj).
The update rules proposed in [P4] are based on this observation. Imagine that we have com-
puted the value of V (k) for acertain channel cin (4.42) and that the sum over each of the five
parts of the convolved response are separately known. Take part A as an example. Sum over
this part in the neighbouring channel c+1 is obtained by “shifting” the part A upwards in the
spectrum and integrating over that part. Theintegral for c+1 isdirectly obtained by multiplying
the sum in channel ¢ with a constant (smaller than one) which causes the old values gradually
leak out from the sum and by adding new spectral components when they come under the inte-
gral. Thisway the sum can be updated iteratively over the whole spectrum. More detailed for-
mulas for computing estimates of V., ;(k) or V__;(k) based on V (k) are given in [P4].
Important in doing thisis that the iterative calculations are performed so that numerical errors
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do not cumulate in the calculations.

The computations briefly introduced above lead to alinear distribution of subband center fre-
quencies where the center frequency of channel cis f . = cf /K. The desired channel distri-
bution, however, is uniform on the critical-band scale defined in (4.6). This problem is easily
circumvented. An arbitrary distribution of center frequencies can be simulated by weighting
the outputs of the linearly-distributed channels accordingly. This is possible when the channel
density is sufficiently high, asis the case here. A uniform distribution of channels on the criti-
cal-band scale can be ssimulated by weighting the outputs of the linearly-distributed channels
by 1/u, where the bandwidth u, is computed according to (4.4).

The spectrum V (k) at each channel ¢ consists of two frequency bands, one centered on zero
frequency and another centered on 2f .. These two have to be computed separately using the
algorithm described in [P4]. However, only the calculations of the band centered on zero fre-
quency were described in [P4] and the band centered on 2f . was ignored. This was not very
clearly stated in [P4] and is therefore mentioned in the errata of [P4] on page 111. The band
centered on 2f. could be computed exactly in the same way (simply changing Z,(l) in
(4.43)), but since we are interested only in the spectrum of the amplitude envelope centered on
zero frequency, this is not presented in more detail. For convenience in the following, we
denote

V' (K) = Hipgry(KVe(K), (4.45)

where H p; (k) is an ideal lowpass filter with cutoff frequency f. and zero-valued phase
response. That is, V'(k) contains only the amplitude envelope spectrum centered on zero fre-
quency and not the distortion spectrum centered on 2f ..

4.2 Auditory-model based multiple-FO estimator

In this section, the above-presented analysisis applied in order to obtain a practically applica-
ble multiple-FO estimation tool for use in music signals. The method is based on using the
whitened wide-band spectrum X(k) in (4.34) and the amplitude envelope spectra V.'(k) in
(4.45). The main difference compared to the unitary model is that the ACF calculations in
(4.39)—«4.40) (IDFT of the power spectrum) are replaced by a more suitable technique. In the
present context, practical FO-estimation accuracy iswhat counts.

The human auditory system is very good at multiple-FO estimation. The unitary pitch model, in
turn, successfully ssimulates many of the qualitative properties of human pitch perception, sug-
gesting that the model works in away similar to its physiological counterpart. Nothing would
be more natural than to pursue accurate multiple-FO estimation by recruiting the unitary model.
This has been attempted by us for monophonic signals in [Kl1a99a] and later for polyphonic
mixtures (unpublished). Other authors have reported work to thisdirection in [Mar96b, deC99,
Tol00, Wu02]. However, it has turned out that the unitary model as such is not a very accurate
multiple-FO estimator.

In the following, we analyze why the unitary model often failsin practical multiple-FO estima-
tion tasks. Then, afew modifications are proposed to remove these shortcomings. An overview
of the modifications will be given in Sec. 4.2.2. Before that, the backgrounding signal model
and the concept resolvability will be introduced in the next subsection. Sections 4.2.3-4.2.5
will discuss the proposed modifications in detail. Computational efficiency will be considered
in Sec.4.2.6. Extending a single-FO estimator to the multiple-FO case is described in
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Figure 19. Overtone partials of a harmonic sound on a critical-band scale (see (4.6)).
The upper panel shows the first 50 harmonics when FO is 140Hz. In the lower panel, FO
iIs415Hz. The dotted vertical linesindicate the boundaries of adjacent critical bands, i.e.,
the ERB bandwidths of the auditory filters at these positions.

Sec. 4.2.7.

4.2.1 Harmonic sounds: resolved vs. unresolved partials

In the rest of this chapter, we consider specifically harmonic sounds. The following local
model is assumed for the time-domain signal of a harmonic sound

P
x(t) = z ancos(2mf jt+ ¢ ) (4.46)
p=1

where a;, f, and ¢, are the amplitude, frequency and phase of the p" harmonic partial,
respectively, and P is the number of partials. These parameters are assumed to be time-invari-
ant within one analysis frame. Note that (4.46) does not assume perfect harmonicity or that the
frequencies fp would obey the specific expression in (3.1). The basic notion of a harmonic
sound involves certain assumptions, however. These were described verbally in Sec. 3.1 and
will be stated more exactly when needed in Sec. 4.2.4.

The concept resolved vs. unresolved harmonic components is very important here. Resolved
harmonics refer to partials which are resolved into separate auditory channels: the output of
those auditory filters is dominated by one harmonic partial. Unresolved harmonics, in turn, go
to asame channel with their neighbouring partials and the frequencies of individual partials are
not resolved [Hou90, M0o095b]. Figure 19 shows the overtone partials of a harmonic sound on
acritical-band scale (the scale is given by (4.6)). As can be seen, the lowest about ten harmon-
ics are resolved into separate auditory channels, whereas the higher harmonics are not. The sit-
uation does not change significantly when FO is varied. The critical-band range e(f) [0 [1, 35]
corresponds to frequencies between 25Hz and 10kHz.

In pitch perception, it seems that spectral locations of partials are more important for the
resolved harmonics, whereas spectral intervals are more important for the higher, unresolved,
harmonics. This stands to reason since the spectral-interval information appears as beating in
the amplitude envelopes but this cannot occur at channels which comprise only one (resolved)
partial. Secondly, the precise frequencies and amplitudes of resolved partials are available to
the central auditory system, but this is not the case for unresolved partials which go to a same
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channel with their neighbouring harmonics.

Also simple psychoacoustic experiments support the view that spectral-location information is
more important for the low-order (resolved) partials. For example, the pitch of a harmonic
sound does not change significantly if its even-numbered harmonics are removed. However, if
the odd-numbered harmonics are removed, the pitch doubles because the remaining harmonics
correspond to those of a two-times higher sound. This suggests that the spectral locations
affect the perception of pitch. However, thisis not the case when only higher-order harmonics
are involved: the spectral intervals dominate and it becomes impossible to say whether an
even-numbered or an odd-numbered series of harmonics is higher in pitch. In [KIa99b], we
carried out a small psychoacoustic experiment to determine the limit, up to which the human
auditory system discerns the spectral locations of harmonic partials. A total of nine subjects
were presented with a pair of harmonic sounds, one composed of a set of five successive odd-
numbered harmonics, and another of a set of five successive even-numbered harmonics. The
subjects were asked which one of the sounds was higher in pitch. In cases where the series of
partials was among the lower harmonics, the subjects perceived a clear octave difference. In
the higher end, however, the octave difference disappeared and the subjects selected odd/even
series to be higher with 50% probability. 1.e., the spectral-location dependency disappeared. In
all cases, the FO of the sound was 137Hz and the order of presentation was randomized.

In the unitary mode!, the terms X(k) and V (k) correspond to spectral-location and spectral-
interval information, respectively. Based on the above discussion, we make the important inter-
pretation that the term X (k) represents mainly the resolved harmonics and the term V (k) rep-
resents mainly the unresolved harmonics. This interpretation is maintained throughout the
analysis in the previous section so that also the terms X (k) and V (k) in (4.24)«4.33) are
interpreted to be oriented towards resolved and unresolved partials, respectively. The most
obvious argument for thisis the fact that amplitude envelope beating at the FO rate, or, signifi-
cant components in V (k) , occur only when several partials go to a same auditory channel
which isthe case for the unresolved harmonics. Finally, $,(t) in (4.39) isinterpreted to repre-
sent mainly the resolved partials and S,(1) in (4.40) mainly the unresolved partials.

4.2.2 Overview of the proposed modifications

The modifications to be proposed in the following are directed at the steps 3 and 4 of the uni-
tary model. The ACF calculations are replaced by a technique called harmonic selection and
more complex subband-weighting is applied when combining the results across bands. As
described in Sec. 3.5, the steps 34 of the unitary model are a matter of dispute in psychoa-
coustics and, from the point of view of practical FO-estimation, the attractive properties of the
unitary model stem from the steps 1 and 2.

Harmonic selection is here defined as the principle that only a set of selected spectral compo-
nents are used when computing the “salience” of a FO candidate, instead of using the overall
spectrum. The word salience is here used to refer to the calculated weight, or, likelihood, of a
FO candidate. The word “likelihood” is not used because it carries a probabilistic connotation
which is not given to the word salience. In multiple-FO estimation, it is desirable to minimize
the interference of other co-occurring sounds and, therefore, it is more robust to use only the
partials of a hypothesized FO candidate to compute its salience and to ignore the spectrum
between the partials. In cases where several FOs are present, usage of the overall spectrum is
problematic since the salience calculations get confused by the co-occurring sounds and inter-
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Figure 20. Left panel shows the weights cos(21ttk/K) of ACF calculation in (3.3) when

thelag t corresponds to 100Hz (i.e., lag is 10ms). Right panel shows the power response of
acomb filter with afeedback delay corresponding to 100Hz and feedback gain 0.85.

relations of different sounds cause unpredictable combination-effects. The general principle of
harmonic selection was originally proposed by Parsons in [Par76] and a comprehensive review
of the previous harmonic selection and harmonic cancellation methods can be found in
[deC93].

In the time domain, harmonic selection can be implemented by using a bank of comb filters
and by measuring the energies at the outputs of the filters. Each comb filter is characterized by
a certain feedback delay 1 and a feedback gain O <a <1. The output y (n) of acomb filter
with feedback delay 1 can be written as

y:(n) = (L-a)x(n) +ay, (n-1). (4.47)
Figure 20 illustrates the power response of a comb filter with T corresponding to 100Hz and
a = 0.85. For comparison, the weights of the ACF calculation are shown for the same delay,
analogous to Fig. 10 on page 25. Estimating the energy of the output y (n) can be performed
by squaring and summing in the time domain which is equivalent to summing over the power
spectrum of the filtered signal.

We implement harmonic selection (i.e., a comb-filter like response) directly in the frequency
domain. For the resolved harmonics, afrequency bin to represent the harmonic partia p of a
fundamental frequency candidate F = f./1 is selected from the spectrum as

k.. = agmax (|X(k)]), 4.48

b T kDKpJ( (K)l) (4.48)
where

KIOT = [k|(o,0)w (1)] (4.49)

k() = LpK/(t +Ar/2)J+1 (4.50)

k(= max{[ pK/(t-A1/2) ], k(")} (4.51)

Above, K . definesarangein the V|cm|ty of the ideal harmonic frequency pK/T where the
maximum of IX (k)| is assumed to indicate the partial p. The scalar AT represents spacing
between successive period estimates 1. Here, we use a constant sampling of lag values,
At = 1, analogous to the ACF. The set K . Is defined so that, for afixed partial index p, all
spectral components belong to the range K . of at least one candidate 1, and the ranges of
adjacent period candidates T and T + At cannot overlap by more than one frequency bin.

The selected frequency bins kp'T are used to compute a salience function A,(t) which
replaces 5;(1) in (4.38). The function A, (1) represents the contribution of resolved harmonics
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to the salience of a period candidate t. The function is computed as

A(D) = [w(p, 1) Xk, 1 (4.52)

p

where the two-parameter function w(p, T) determines the weights of different harmonics in
the sum and, as a side-effect, determines the upper limit up to which the partials are considered
as “resolved” and thus included in the sum (i.e., the weight approaches zero for large p). The
sum cannot be extended to arbitrarily large values of p because only the lower-order harmonics
can be expected to reside at approximately harmonic positions of the spectrum. Aswill be seen
in the next subsection, the “degree of resolvability” of a partial, w(p, 1), is a two-parameter
function, depending on the frequency of the partial p and the fundamental frequency f./T1.

Applying the weights w(p, 1) in (4.52) represents another fundamental departure from the
unitary model. It should be noted that the summing in (4.52) occurs across auditory channels.
This is because resolved harmonics, by definition, are located at distinct channels. In hearing,
the resolved harmonics are separately coded in the auditory nerve and it is the task of the cen-
tral auditory system to recombine this information so that the partials of a harmonic sound are
perceived as a coherent whole. Thus it is conceivable that some more complex weighting can
take place for the resolved harmonics in pitch calculations.

For comparison, let us write out the salience function S, (t) whichisbeing replaced by A,(T1):

8,(1) = = Z [COSEQHTK]|HLP(k)|2X(k)} (4.53)

Above, a unity wei ght is assigned to partials at harmonic positions of the spectrum and, pro-
vided that there are partials at these locations, their powers are summed with unity weights up
to the cutoff frequency of the lowpassfilter H| p(k) . Thisis not very suitable as such®.

Thereis alot of evidence that pitch perception for harmonic sounds resembles a spectral pat-
tern-matching process, especially for the lower-order partials which are resolved into separate
auditory channels [Gol 73, Wig73, Ter74,82a,b, Har96]. However, the process is not likely to
take the form of lowpass filtering followed by ACF calculation but happens in a more complex
manner in the central nervous system.

The salience function A;(T) in (4.52) is based on the assumption that the frequencies and
amplitudes of individua resolved partials are available to the central auditory system which
processes those parameters whatever way it wishes. There is no particular necessity to stick to
the ACF. It is important to note that the lowpass filter H, (k) in (4.53) and the weight func-
tion w(p, T) in (4.52) model two different things. The filter H (k) models the response of
the hair-cells which transform mechanical vibration into neural impulsesin the inner ear. The
weights w(p, 1), in turn, model a pattern-matching process which is assumed to take place in

1. Consider alow-pitched sound with FO 100Hz. In polyphonic music, the frequency range between
100Hz and 1.0kHz is heavily occupied by other sounds. Blindly picking components from all harmonic
positions and weighting them equally is not robust. The implicit spectral smoothing mechanism
described in Sec. 3.5.3 would partly prevent from “stealing” the partials of other sounds, but this mech-
anismisinvolved only in the amplitude-envel ope related part V (K) . For a high-pitched sound with FO
1.0kHz, in turn, the lowest and most important harmonic partial s are each resolved to separate auditory
channels. As such, they cannot generate beating frequenciesto V .(K) and, in (4.53), they are rejected
by the lowpassfilter. In practice, FOs above about 600Hz are detected very poorly.
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the central nervous system. In principle, the filter H (k) should be included in (4.52) (the
hair-cell response cannot be bypassed), but since w(p, T) acts as alowpassfilter, H (k) can
be omitted.

Another, less important modification is that, in (4.52), magnitude spectrum is used instead of
the power spectrum in (4.53). This modification is due to both simplicity and accuracy. The
second power stems from the ACF computations and there is no particular reason to maintain
it. On the contrary, as discussed below (3.2), it is usually advantageous to use a “generalized
ACF” where the exponent is below two. Tolonen and Karjalainen suggest the value 0.67 in
[Tol00]. Thisisamatter of fine-tuning and not important here, therefore the unity value is used
for smplicity.

The other part, 5,(t) in (4.38), represents mainly the unresolved harmonics as discussed in
the previous subsection. This is replaced by a salience function A,(t) where harmonic selec-
tion is applied in a manner analogous to that described above. The salience function A,(T) is
defined as

A(T) = max En H, (k) v_gv "(K)

? KOK, .00 =P Zocjs_n ¢

where ng isareal-valued constant and K,  isobtained by substituting p = 1 in (4.49). Firt,
note that magnitude spectra at different channels c are used, instead of the power spectraasin
(4.35). This modification is due to the same reasons as for the A, (1) part. Also, as defined in
(4.45), V' (k) contains only the amplitude-envel ope spectrum centered on zero frequency and
not the distortion spectrum centered on 2f .. Secondly, only one frequency bin is selected in
the vicinity of the fundamental frequency K/ 1. This can be computed very efficiently using
the algorithm in [P4] and leads to a very efficient overall implementation as will be described
in Sec. 4.2.6.

Individual frequency bins V' (k,) at each channel ¢ suffice to represent the salience contribu-
tion of unresolved harmonics for the fundamental frequency candidate F = (ky/K)f.. A
complete argument for thisis given in Sec. 4.2.4 but an intuitive description is given here. Note
that the single frequency bin V' (k) retains all the desirable properties of the unitary pitch
model described in Sec. 3.5. First, V.'(k,) represents spectral-interval oriented information
regarding the fundamental frequency F = (ky/K)f.. The magnitude of V.'(k,) revealsthe
amount of amplitude-envelope beating at rate F at subband c. The beating, in turn, isdueto all
frequency components with interval F at channel c. If the fundamental frequency F is present,
each two neighbouring harmonics contribute to the beating at the rate F, and the magnitude of
V. (k) ishigh. Secondly, due to the manner how the amplitude of the beating is formed (see
Fig. 12 on page 30), V. '(k,) retains the property of implicit spectral smoothing. Thirdly,
V. '(ky) is phase-dependent because it is computed using the complex Fourier spectrum,
according to (4.25) and (4.45). If the harmonics of a sound are phase-locked to each other (lin-
ear phasg, i.e., the phase difference between each pair of neighbouring harmonics is approxi-
mately constant), the magnitude of the beating at the fundamental rate islarger.

o (454)
Il

The overall salience of aperiod candidate T isthen defined (analogoudly to (4.38)) as:

A(T) = Ay (1) + Ay(1). (4.55)
The maximum of A(t) isused to indicate the fundamental period. The corresponding funda-
mental frequency isF = /1. Thisrepresents one detected FO in amixture signal. An exten-
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sion to multiple-FO estimation will be described in Sec. 4.2.7.

4.2.3 Degree of resolvability w(p, 1)

This subsection is concerned with the coefficient w(p, T) in (4.52). The coefficient was inter-
preted as the degree of resolvability for harmonic p of fundamental period candidate 1. The
salience function A, (1) was calculated by selecting frequency components nearby harmonic
spectral locations, by weighting their magnitudes by w(p, 1), and by summing these. Weight-
ing different partials p by their resolvability is motivated by the fact that the spectral locations
of partials are important only in the case of resolved partials, as discussed in Sec. 4.2.1.

The boundary between resolved and unresolved partials is not sharp but we have to speak
about “degree of resolvability”. How could this be measured? For the overtone partials of a
harmonic sound, resolvability depends on the FO and on the harmonic index p of the partial.
This can be seen by estimating the number of partials which go to a same auditory channel
together with harmonic number p. The frequency interval between partials is determined quite
accurately by the the fundamental frequency F, and the ERB bandwidth of the auditory chan-
nel around harmonic p can be estimated by substituting f. = pF to (4.4). The ratio of these
can be used to estimate the number of partials Y{(p, F) going to a same auditory channel with
harmonic p:

24.7[1 + 4.37pF /1000]

= :
As can be seen, Y(p, F) grows linearly as a function of the harmonic index p. (Note that the
above simple ratio gets values below unity when the inter-partial interval is larger than the
ERB value.)

We propose to model the degree of resolvability as proportional to the inverse of Y{(p, F):

Y(p,F) =

(4.56)

w(p, F) = w, F )
24.7[1 + 4.37pF/ 1000]

where the scalar w, is an unknown parameter that has to be experimentally found. Apart from
saying that w(p, F) represents the degree of resolvability, the function is not given any exact
psychoacoustic interpretation. It has merely practical use. Note that the above ratio (excluding
W, ) gets values above unity for the few lowest harmonics, meaning that some auditory chan-
nels around those partials do not contain partials at all. Although the neighbouring channels
actually should not affect the resolvability, for ssimplicity, the measure in (4.57) is used in the
following without limiting the maximum value of the above ratio to a unity value.

(4.57)

The function w(p, F) controls the contribution of partial p to the salience function A,(T).
Figure 21 illustrates the values of w(p, F) for thefirst 20 harmonics of afew fundamental fre-
quency values. As can be seen, the contribution of partial p to the salience function A,(T)
decreases as a function of the harmonic index p. Here, more or less arbitrarily, we use
wy = 0.5.

It isinteresting to note that the contribution of an overtone partial p to the other salience func-
tion, A,(1), increases as afunction of p. This occurs athough no weighting function is explic-
itly included in (4.54). As described around (4.54), asingle frequency bin V.' (k) is selected
to represent the salience contribution of unresolved harmonics to the fundamental frequency
candidate F = (ky/K)f at channel c. According to the decomposition in (4.42), V. (kp)
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Figure 21. Values of w(p, F) for the first 20 harmonic overtones of afew FO values. The
curves (bottom-up) correspond to FO values 70Hz, 150Hz, 300Hz, and 1.0kHz, respec-
tively. The applied value of the scalar wy, is0.5.

can be calculated by summing over | in Z, (1)J (1), where Z, (1) is the convolution spec-
trumand J ko(I) is the convolved response at channel c¢. For a fixed fundamental frequency
corresponding to kg, the term Z, (I) remains the same at different channels. However, the
term J. ko(I) = H.(DH.(ky—!) varies aong with the channel index c. As can be seen in
Figure 18, if k; is small compared to the bandwidth of H_(I), the passbands of H(I) and
H.(k,—1) overlap alot in the convolution and the overall power transmission of the con-
volved response J. | (1) ishigh. Because the bandwidth increases linearly as afunction of the
center frequency (see (4.4)), the power transmission of J ko(I) increases with frequency. This
has the consequence that the contribution of the harmonic series of a sound to the salience
function A, (1) increases as a function of the harmonic index p. On the other hand, for afixed
subband c, the power response of J, I(O(I) decreases with an increasing Kk, (increasing funda-
mental frequency).

Based on the above description, we can express the average spectral density ¢(f., F) of the
convolved response J.. (1) at channel centered on f and for fundamental frequency F as

U3 e S HeWH(ke =)

S oo 3 HH(D)
where k. = (F/ f)K is the frequency bin corresponding to F. Note that the denominator
represents the ERB value (i.e., bandwidth) of the flex response at channel c. Normalization
with the bandwidth is important in order to compensates for the effect which is merely due to
the fact that the ERB values increase with frequency. That is, the average spectral density of
the convolved response, not the overall power transmission, acts as the weight for individual
harmonic partials that reside at that particular channel.

&(fe F) (4.58)

Thevalue &(pF, F) represents an implicit weight which affects the salience contribution of an
overtone partial p to the function A,(1) . Figure 22 illustrates &(f ., F) for thefirst 20 harmon-
ics of a few fundamental frequency values. The curves have been obtained by substituting
f. = pF in (4.58). As can be seen, the salience contribution increases monothonically with
harmonic index p and saturates to unity. As a consequence, the function A,(t) indeed repre-
sents mainly the unresolved partials. No upper limit for the harmonic index needs to be set. In
practice, however, significant harmonic components are not observed above 6-8kHz and it
does not make sense to consider subbands with center frequencies above this.

It seems reasonable that the functions w(p, F) and &(pF, F) would sum approximately to
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Figure 22. The function &(pF, F) for the first 20 harmonic overtones of afew FO values.
The function reflects the contribution of the harmonics to the salience function A,(t) . The
curves (top-down) correspond to FO values 70Hz, 150Hz, 300HZz, and 1.0kHz, respectively.
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Figure 23. Thin solid line shows w(p, F) (with w, = 0.5) asafunction of the harmonic

index p. Dashed line shows & (pF, F) . The sum of the two functions is indicated by thick
solid line. FO values are 70Hz, 150Hz, 300Hz, and 1.0kHz, from left to right, respectively.

unity over the harmonic series of a sound, so that the harmonics which contribute only little to
the salience function A, (1) would contribute more to the salience function A,(T) , implement-
ing a smooth transition between the resolved and unresolved partials.

The thin solid line in Fig. 23 illustrates the degree of resolvability w(p, F) (with wy = 0.5)
as a function of the harmonic index p. Along with that, the dashed line shows &(pF, F) asa
function of p. The sum of the two is drawn with a thicker line. As can be seen, the two func-
tions sum approximately to unity over the harmonic series of a sound. For the lowest few har-
monics of high-pitched sounds, however, the sum clearly exceeds the unity value. This is
because the modeled resolvability w(p, F) in (4.57) was not limited to values below unity.
However, the additional boost for the few lowest harmonics of high-pitched sounds turned out
to be a good feature, since the high-pitched sounds typically have only few harmonic compo-
nents altogether, and the boost compensates for this.

Table 3 shows the pseudocode of the algorithm which computes the salience function A, (T).
The algorithm has several nice properties. First, it is not computationally very complex, sinceit
is safe to consider only the first 20 harmonics of each period candidate due to the fact that the
weight w(p, F) becomes quite small above this. When the partial index p is fixed, the number
of elements in the sets [k(O), ..., k(M)] for different T 0T altogether is less than K +|T |,
where |T| isthe number of period candidates and K is the transform length. Thus, the overall
complexity of the algorithm is of the order O(20(K +|T|)) = O(K +|T|) when a fixed
number of 20 partials is considered. Secondly, only the selected frequency components affect
the salience of a FO candidate, not the overall spectrum. This provides some robustness in
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Table 3: Algorithm for computing the salience function A4 (1) .

# Compute saliences A;(T) of fundamental period candidates T
for T — from 2 to T, with stepsize AT do
A(t) <0
F—fJ/1
p < 1
while p< 20 and | p(K/T+A1/2) |<K/2 do
# Harmonic selection: find maximum amplitude in the specified range
kO = | pK/(T+A1/2)|+1
k() = | pK/ (1 =A1/2) |
if kK1) <k then
k(1) k(0
end if
k' — argmax{|X(k®)], ..., |X(kD)}
# Cumulate partial amplitudes to A(T)
# Term W(p, F) represents the degree of resolvability (see (4.57))
# Term Y\, is due to compression modeling (see (4.19))
A1(T)  Ay(T) +w(p, F)y | X(K)
p-ptl
end while
end for

polyphony. Thirdly, only the lower-order partials are selected according to their ideal spectral
locations and this is appropriate even for sounds that exhibit some inharmonicity. Finally, the
algorithm does not require an unrealistic frequency resolution: the spectral band
[k, ..., k(D] is never extremely narrow in relation to its center frequency because only the
lowest 20 harmonics are considered. This is not only a matter of psychoacoustic plausibility
but leads to an algorithm which works accurately in relatively short analysis frames.

4.2.4 Assumptions underlying the definition of A,(T)

The aim of this subsection is to describe the assumptions that underlie the definition of A,(T)

in (4.54). In particular, the purpose is to explain why individual frequency bins V'(Kk,) at each
channel ¢ can be used to represent the contribution of unresolved partials to the salience of fun-
damental frequency F = (ky/K) f. The assumptions culminate to the question what exactly
Is assumed about the input signals, i.e., about harmonic sounds. This class of sounds was
defined merely verbally and through examples in Sec. 3.1. We show that by making certain
assumptions about the input signals, the amplitudes a, of the unresolved harmonics of funda-
mental frequency F = (ky,/K)f at the subband c can be estimated using only the single fre-
quency bin V.'(kg) .

Let us consider the model for the time-domain signal x(t) of a harmonic sound in (4.46). The
power spectral density of the signal can be written as

f) = 3 ags(f=1y), (4.59)
pUN

where 0 isthe unit impulse function and the set N is defined to include both positive and nega-
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tiveindexes, N = [P, 1] O [1, P] . Negative indexes are used to express negative frequen-

cies, i.e, f—p = —fIO and a_, = a, fornON.

When the signal x(t) ispassed through a critical-band auditory filter with a squared magnitude
response LIJhc(f) as defined in (4.12), the output of the filter can be denoted by
llJXc(f) = llJX(f)lJJhc(f). Using the signal model in (4.59), this can be written as

W, (f) = g azd(f —f )W, (fp). (4.60)
pTTN

When half-wave rectification is applied on the subband signal x(t), the power spectral den-
sity of the resulting rectified signal y.(t) can be approximated using (4.20) as

2
W, () = %ia(fw% g a2a(f —f )W, (f,) (4.61)
pfTN

1
g O(f —f. + f)aza2w, (f)W, (f.
4_’_[0_§i ;Vj ( i J) (| hc( |) hc( J)

where 02 isthe variance of the subband signal x(t).

We denote the convolution term? in the above expression by LIJ\A,C( f):

1
O(f—f. + f)laza2w, (f )W, (f.). 4.62
4T[0§i;\‘j;\‘ ( i+ afa hc( ) hc( i) (4.62)

Examples of the power spectra HJXC( f) and ch( f) wereillustrated in Fig. 17 on page 42.

W, (f) =

The first necessary assumption concerning the input harmonic sounds is that the frequency
interval between adjacent harmonics, f, = fp s o remains approximately constant
within one critical band. This assumption is reasonable for the kind of inharmonicity that we
consider in this work (dispersive strings etc.). Even when sounds exhibit inharmonicity, the
spectral intervals are slowly-varying as a function of frequency (see e.g. (3.1)) and can be
assumed to be piecewise constant at sufficiently narrow bands. Using this assumption, the sin-
gle spectral line llJ\A,C( f,) at subband c can be calculated as

P-1
2
a2 Z agagﬂwhc(fp)whc(fp”), (4.63)
p=1

when f, = f,, ,—f, isconstant at the subband c.

Secondly, we know that for the higher-order unresolved harmonics, the human auditory system
does not distinguish the amplitudes of individual harmonic components. Instead, the rough
spectral shape of several componentsis perceived (approximately one level measure per a crit-
ical band and a distinct sound source). If one harmonic raises clearly above the other partias, it
is usualy perceptually segregated and stands out as an independent sound. This feature of

hearing is well modeled by the unitary pitch model as discussed in Sec. 3.5.

W, (fp) =

In the computational analysis of sounds, it is useful to make a “spectral smoothness’ assump-
tion similar to that in human hearing. More specifically, we assume that the partial amplitudes
a, within one critical band ¢ centered on frequency f; can be approximated by a single level

1. Dueto the differencesin the two approximations (4.20) and (4.23), W, () isnot the exact power
spectrum of V (K) as defined in (4.25). Instead, ch( f) isan approximation. For this reason, the
notation W, (f) isusedinstead of W, (f).



measure A, so that

apzAC,when|fp—fC|<uC, (4.64)
where the ERB bandwidth u is given by (4.4).

Why should we assume spectral smoothness? This argument requires some elaboration. Hereit
suffices to consider musical instruments specifically. It is generally known that high-quality
synthesis of harmonic sounds can be achieved by employing only one time-varying level meas-
ure per each critical band. From musical instrument construction point of view, in turn, if one
harmonic raises above the other partials, it is perceptually segregated and no more perceived to
belong to the complex. Thisis an unwanted effect and typically avoided in instrument design.
The spectrum of musical sounds depends on their physical sound production mechanism.
Many instruments can be seen to consist of two acoustically coupled parts, a vibrating source
(e.g. a string or an air column) and a sympathetic resonator (such as the guitar body or the
piano soundboard). It is theoretically possible to make the vibrating source vibrate in only one
of its vibration modes (frequencies) by e.g. playing a sinusoid of certain frequency nearby a
string [Ros90]. More commonly, however, the excitation signal to a vibrating system resem-
bles a transient signal or an impulse train, resulting in a spectrum where no individual har-
monic stands out. For a plucked string, the spectrum in the beginning of the vibration
corresponds to the Fourier transform of the shape of the displaced string just before it is
released [FI€98, p.41]. The vibration spectrum is then filtered by the frequency response of the
coupled body resonator. It is musically undesirable that the symphatetic resonator would have
very sharp resonance modes (formants) but usually the resonator is strongly damped, radiates
acoustic energy efficiently, and has a smooth spectrumd.

By making the spectral smoothness assumption, (4.63) can be written as

4 P-1
_ C
W (fa) = 2no§pzlwhc(fp)whc(fp+1) (4.65)
From which A, can be solved as
W, (f,)2mao?
R AN L (4.66)

S W)W ()

It should be noted that the frequencies f ; of individual unresolved partials are not known.
However, at bands that contain unresolved components, the partial density is sufficiently high
to “sample” the squared frequency response W, (f) so that the exact spectral positions of the
harmonics become insignificant. In other Wordsf harmonics with f, inter-partial distance are
distributed all over the response W, (f). When the “sampling interval” f, gets smaler, the
exact “sampling positions’ do not métter, and (4.66) approaches the limit

1. Inregard to spectral smoothness, speech and singing signals are an important borderline case. The Q-
values of the lowest formants of vowel sounds are between 8-15, and those of the higher formants
between 15-30 [Dun61l; Ste98,p.258]. For comparison, the Q-values of the auditory filters are around 8
for channels above 1kHz and vary between 3 and 8 below that. The Q-value of a bandpassfilter is
defined asthe ratio of the center frequency to the -3dB bandwidth of the filter. Thus the higher the Q-
value of afilter, the sharper the shape of its magnitude response.
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W, (f,)2ma?
Ad= Yo O ¢ . (4.67)

¢ 1
£ f, n (W (F + fa)df

Here, the frequencies of the individual partials need not be known.

In conclusion, the single frequency bin W, (f,) sufficesto represent the level of the partials of
fundamental frequency F = (ky/K)fg at subband c. Of course, this result depends on the
validity of the above assumptions and of the approximation for a half-wave rectified signal
given by (4.20). Virtanen and Klapuri used the described assumptions and (4.20) to estimate
the parameters of the unresolved harmonic components in a sound separation system (unpub-
lished at the present time). In resynthesis, good perceptual quality was achieved for the higher-
order unresolved partials using the described model and assumptions.

Provided that an input sound indeed has sinusoidal partials with constant intervals f , at chan-
nel c, it is easy to see that the convolution term W, contains partials also at the multiples
mf ., where integer m = 1, 2, 3, .... However, it iS not necessary to extend the harmonic
selection so that also these components would be picked from WA and summed. In fact, the
amplitudes A given by (4.67) can be used to predict (approxmate) the magnitudes of the
gpectral lines W C(mfA) form>1 as

4 P—-m
W, (mf,) = Z—CZ Y Wh(F)%h(foim (4.68)
=1

- A? Hin
Zmsz DI Wi (F)Wy, (f +mf,)df

Substituting A2 from (4.67) this can be written as

L LPhc(f)LIJhc(f +mf,)df
Y. (mf.)=W. (f . 4.69
lMa)=ella) [ Wn (W (1 + 1) @)
Let us see what difference it would make to select and sum up all the harmonically related par-
tials Wg (mf ,), wherem = 1,2, 3, .... The sum would be

I LPhc(f)LIJhc(f +mf,)df
W, (mf ) =W, . 4.70
Z Amha) = Fef A)ZIWh(f)wh(f+fA)df @
The sum on the right-hand side of the above equation merely amounts to a very complicated
weighting of the individual spectrum line lJJ\A,C(f A) - Such weighting turned out to be com-
pletely unnecessary.

The purpose of the above analysis was to motivate the use of only one frequency bin V' (k;)
at each channel c to represent the contribution of unresolved partials to the salience of funda-
mental frequency candidate F = (ky/K)f, at those channels. As aready discussed in
Sec. 4.2.2, the single frequency bin V' (k,) retainsthe desirable properties of the unitary pitch
model.

For convenience, let us rewrite here the definition of A,(t) from (4.54):
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Figure 24. Magnitude response of the filter H, ;(k) applied on V. '(k) in (4.71). Due to
the narrowband nature of V' (k) , characteristics of the filter above 1kHz are not important.
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Note that in the above equation, the values V' (k) are used directly and are not used to esti-
mate the magnitudes of the individual partials a, = A according to (4.67). Using the magni-
tudes of the partials, a,, would omit the implicit “weighting” of individual harmonics by
&(pF, F) asdescribed in the previous subsection and in Figs. 22-23. This would not be appro-
priate since A,(T), by definition, should represent mainly the unresolved harmonics. This, in
turn, isbecause V' (k) wasinterpreted to represent mainly the unresolved harmonics.

Thefilter H p(k) in (4.71) cannot be omitted. As described in the end of Sec. 4.1.3, the recti-
fied signal contains a significant dc-component and, in order to remove this, the filter H, 5(k)
typically implements a bandpass response with -3dB cutoffs around 60Hz and 1kHz. Since we
areusing V' (k) instead of V (k) , only the highpass characteristics of the filter are important.
(Theterm V' (k) contains only the amplitude-envel ope spectrum centered on zero frequency
and not the distortion spectrum centered on 2f ..) Figure 24 illustrates the frequency response
of the applied butterworth filter of order four per each transition band and with the -3dB cutoff
at 60Hz. The scaling factor n, in (4.71) is a free parameter which will be determined in the
next subsection.

0
0. (4.70)
0

425 Model parameters

Theoverall salience A(t) of different fundamental period candidatesis given by (4.55). A nice
property of the overall model isthat it contains only few free parameters. However, an impor-
tant parameter which remains to be determined is the relative weight of the two parts A, (1)
and A, (1) . Notethat both parts include an unknown scaling factor: w,, for A,(1) in(4.57) and
No for A,(1) in (4.54). The numerical ranges of the two parts have to be matched in order that
both terms would have an appropriate effect on A(t) . It suffices to balance the levels of A, (T)
and A,(1) in relation to each other since the absolute numerical range of A(T) is not impor-
tant. Thus, for simplicity, wefix n, = 1 and consider only w,, as afree parameter.

Another important parameter is the value v of the vil-law compression in (4.19). Thirdly, the
widths of the subbands u, were found to be an important tunable parameter in the model. We
applied ascalar u, so that the used bandwidths were ugu,., where u, isaccording to (4.4). In
other words, the factor scales the defined critical bandwidths and this has an effect everywhere
where these bandwidths are used, without having to modify the other parts.

The parameters wy, v, and u, were found experimentally in simulations. Musical instrument
samples were randomized from an acoustic database and the accuracy of the FO estimation
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method for this material was evaluated using different parameter values. The database com-
prised atotal of 2536 individual recorded samples from 30 different musical instruments (the
same database was used in [P5]). Random mixtures of sounds were generated by first allotting
an instrument and then a random note from its whole playing range, restricting, however, the
pitch over five octaves between 65Hz and 2100Hz. The desired number of simultaneous
sounds was allotted and then mixed with equal mean-square levels. The acoustic input was fed
to the FO estimation method which estimated the FO in one 93ms time frame, 100ms after the
onset of the sounds. The sampling rate was 44.1kHz.

In polyphonic mixtures, we used the predominant-FO estimation accuracy as the criterion for
parameter selection. In predominant-FO estimation, the FO estimate is defined to be correct if it
matches the correct FO of any of the component sounds. In other words, only one FO was being
estimated. A correct FO was defined to deviate less than 3% from the pitch of the reference
musical note. Multiple-FO estimation, i.e., estimation of the FOs of all the component sounds,
will be considered in Sec. 4.2.7.

Note that in these experiments, A(t) was computed for al T T wheretheset T comprised
lag values between 50Hz and 5000Hz. This requires computing V' (k) for all k and al c to
obtain A,(1) in (4.54). Asthe complexity of computing V.'(k) for one k and al c is propor-
tional to the frame length K, the complexity of the overall algorithm becomes high
(O(K2+|T|), where |T | isthe cardinality of the set T). However, computational efficiency is
not the main concern now. A solution which overcomes this and leads to an efficient algorithm
will be described in the next subsection.

A three-dimensional search was conducted to find the values of the parameters wy, v, u,. For
v, the values 0.10, 0.20, 0.33, 0.50, 0.66, and 1.0 were considered. For ug, only the values 1.0,
1.5, and 2.0 were considered. The weighting factor w,, was varied in a more continuous man-
ner for each combination of v and u.

As a result of the experiments, the combination of v and u, which performed best was
v = 0.33 and uy = 1.5. These values will be fixed in the following. The value combination
v = 0.5 and uy = 1.5 was almost as good and could be used in DSP applications where the
sgquare root is more efficient to compute (see (4.19)).

Additionally, it was found to be advantageous to use zero-padding in time domain prior to the
Fourier transform to obtain X(k) in (4.21). Thisis because the resolution of A,(T) isbound to
the resolution of the Fourier spectrum V (k) , as can be seen from (4.54). A very good fre-
guency resolution is needed to analyze low-pitched sounds with the required 3 % accuracy.
Zeros were padded to the end of the 93ms analysis frame so as to twice its length prior to the
Fourier transform. (Note that the resolution of A (1) isnot tied to the Fourier spectrum resolu-
tion.)

Figure 25 shows the FO estimation error rate of the proposed method as a function of the
weight factor w, when the parameters v = 0.33 and u, = 1.5 were fixed. The panel on the
left shows the FO estimation error rate for isolated sounds (monophonic signals) and the panel
on the right shows the predominant-FO estimation performance for four-sound mixtures.

From the point of view of FO estimation in general, it is interesting that the graph on the left
(monophonic case) shows the importance of both spectral-location and spectral-interval infor-
mation in FO estimation. An appropriate balance between the two achieves a good accuracy.
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Figure 25. Predominant-FO estimation performance as a function of the parameter w,, for
isolated sounds (left) and for four-note mixtures (right). The vertical line shows the
selected parameter value.

Table 4: Predominant-FO estimation error rates of the proposed method.

Analysis Number of concurrent sounds (polyphony)

frame size 1 2 3 4 5 6
46ms 3.0 2.4 34 5.7 9.3 13
93ms 11 1.0 1.6 2.3 2.6 4.2
190ms 0.9 0.4 1.0 2.0 2.8 2.8

On the other hand, both types of information alone are moderately successful, too. Value
W, = O leadsto error rates 10% (monophonic) and 44% (four sounds) and w, = o leadsto
error rates 11 % (monophonic) and 8.5 % (four sounds).

In polyphonic mixtures, the spectral-location oriented term A, (1) appearsto become relatively
more important. However, thisisin part illusory and is due to the definition of the predomi-
nant-FO estimation task. In higher polyfonies, there often happens to be at least one rather
high-pitched sound. The A;(T) part is successful in detecting these and therefore achieves a
low error rate alone. When all the FOs of the component sounds have to be estimated, the other
term A,(T) becomesimportant again. Thistask will be considered in Sec. 4.2.7.

To summarize, the parameter w, isvery important. Fortunately, however, the performance var-
ies slowly as a function of w,, and finding exactly the correct value is not critical. An unfortu-
nate aspect is that the best value of w,, depends somewhat on the frame size and zero-padding
factor. In the illustrated cases, a 93ms frame with zero-padding was used and w, = 0.35 per-
forms well. For a 190ms frame with no zero-padding, w, = 0.18 performs well. The effect is

important enough so that we fixed different values of w, to be used with different analysis
frame sizes.

Table 4 shows the predominant-FO estimation rates of the proposed method in different poly-
phonies and for three different analysis frame sizes. One thousand random sound mixtures
were alotted in each polyphony, and the average predominant-FO estimation error rate was cal-
culated for these. On the whole, the proposed method is very successful in predominant-FO
estimation, taken the diversity of the acoustic material considered.

4.2.6 Reducing the computational complexity

As mentioned in the previous subsection, the computational complexity of the proposed
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method as such is rather high. The complexity of computing A,(t) aone is
O(KlogK + K +|T|) where the first term is due to the Fourier transform in (4.21), the latter
part is due to the algorithm in Table 3, and |T | isthe number of period candidates to consider.
The complexity of computing A,(t) for all period candidates T O T becomes O(K2 +T|) as
mentioned in the previous subsection. According to the common use of the order-of-growth
notation, the overall complexity becomes O(KlogK + K +|T| +K2+|T|) = O(K2+|T|)
[Cor90].

In this subsection, a solution is described which reduces the overal complexity to
O(KlogK +|T ). Thisisimportant because in multiple-FO estimation, longer analysis frames
are typicaly required than in single-FO estimation. This is due to the relatively higher partial
density in sound mixtures.

Computational efficiency is here achieved by proposing a candidate generation scheme, which
isableto produce a constant small number of period candidates, aset T (), SO that the candi-
date corresponding to the maximum of A(t) is preserved in the subset T (sub) - It follows that
A(T) in(4.55) needsto beevaluated only for T O T (sub) in order to find the single best candi-
date among them. In FO-estimation in general, a small number of the most likely FO candidates
can usually be rather easily generated, but the difficult part is to choose the correct estimate
among these.

The algorithm in Table 3 turned out to be suitable for the purpose of candidate generation. In
other words, we first evaluate only the A, (1) part in (4.55). Thisis not very demanding com-
putationally. A constant number of 10-15 local maxima are then selected in A, (1) to consti-
tuteaset T (sub) - Then, the candidate period values are refined by further evaluating A(T) in
the vicinity of each T O T (sub) - This is done by calculatingA (1) for T = K/k', where
k' OK, ; andtheset K, ; isdefined for T according to (4.49). Thevalue T isthen replaced
by the vaue T which corr%ponds to the maximum of A ;(1) within the set K ;. These
refined period values are stored to the set T (sub) - The A,(1) part is then eval uated only for
TOT (supy Which comprises 10-15 period candidates. The importance of the refining step is
that we can omit the maximization in (4.54) and evaluate V. '(k) only at the positions
k = K/t foreach TUT g . Thus V/'(k) hasto be evaluated only for 10-15 different val-
ues of k. Selecting a number of 10-15 local maximain A(T) to constitutethe set T (sup) (and
then T ) wasfound to preserve the overall maximum of A(t) inthe set. Thiswas observed
in all polyphonies for which the method was evaluated (1-6 simultaneous sounds).

The candidate generation step has a theoretically interesting consequence, however. The over-
all method is no more able to find the FOs of sounds for which all the resolved harmonics are
missing. In practice this happensif all the harmonics from one to about fifteen are missing. It is
known that even in such a case, humans still hear a faint (usually ambiguous) pitch percept
[Hou90]. However, this limitation of the method has only theoretical relevance and no impor-
tance of whatsoever in practical multiple-FO estimation tasks. The usual cases like missing the
first harmonic component are handled without problems.

Note that the set of values T I T considered when computingh ;(t) in Table 3 isin no way
restricted either. The sampling does not need to be uniform on any known frequency scale. For
simplicity, we have assumed that the sampling of lag values is the same as that of ACF in the
given sampling rate, i.e., that At = 1 isconstant in Table 3. Figure 26 shows the resolutions
of three basic FO-sampling schemes as a function of the musical note in the vicinity of which
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Figure 26. Resolution of three different FO sampling scales. The circles (0) indicate the
inter-note-intervals (Hz) of musical notes on the well-tempered musical scale. The crosses
(x) illustrate the FO difference (Hz) of each note in comparison with a“detuned” note which
has one sample longer period. This is the ACF resolution which depends only on the sam-
pling rate f, (here 22.05kHz). The dots (+) show the resolution of the Fourier spectrum
whichis constant f/K and is here shown for transform length K = 4096.

the resolution is measured. In the figure, the musical notes c2 and c7 correspond to fundamen-
tal frequencies 65Hz and 2.1kHz, respectively. As can be seen, neither the Fourier spectrum
nor the ACF resolution is equal to the resolution of the logarithmic musical scalewhichisclos-
est to that of human hearing. However, the resolution of the ACF is in general more natural
than that of the Fourier spectrum.

Some accuracy improvement was achieved by using a non-uniform sampling of T when com-
puting A, (1) . However, the difference to the simple ACF-type sampling was negligible. Also,
it seemsthat even on anon-uniform scale, the set T to consider in Table 3 hasto be rather large
(a couple of hundreds of different values). In the following, the uniform ACF-type sampling
with AT = 1 will be used.

4.2.7 Multiple-FO estimation by iterative estimation and cancellation

In music transcription, it is typically not sufficient to find one correct FO in polyphonic mix-
tures. Instead, the goal isto find the FOs of all the component sounds, or, at least the FOs of the
aurally most prominent sounds.

A simple way of extending the described FO estimation method to multiple-FO estimation
would be to pick several local maximain the function A(t) in (4.55), instead of using only the
single global maximum. This straightforward approach is only moderately successful, how-
ever. For an analysis frame size of 93ms, this technique leads to 40% error rate in four-sound
polyphonies, meaning that on the average, 2.4 fundamental frequencies out of four were cor-
rectly estimated.

One of the basic problems in multiple-FO estimation is that even when a predominant-FO esti-
mator detects a correct FO, the next-highest weight is often assigned to half or twice of this cor-
rect FO value. Thus, the effect of any detected FO must be cancelled from its harmonics and
subharmonics before deciding the next most likely FO.

In the following, we describe an iterative multiple-FO estimation method which consists of two
main steps. First, the described FO-estimation method is used to find one FO in a mixture sig-
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Table 5: Pseudocode of the algorithm which computes aresidual spectrum Xg(k) where the
effect of the resolved harmonics of al detected sounds is cancelled from the mixture
spectrum X (k) . The estimated period of a detected sound is denoted by T; .

if Thisisthefirst iteration then
# Initialize the spectrum of all detected sounds (resolved partials only)
Xp(k) « Ofork =0,1,2,...,K/2

end if

# Residual spectrum (zero-phase)

Xg(K) « max(|X(k)| —Xp(k),0) fork = 0,1,2,...,K/2.

Fi — f/7;

p~1

while p<20 and | p(K/T+A1/2) |[<K/2 do

# Harmonic selection as in Table 3

kO | pK/(fj+A1/2) |+1

k(D | pK/(f;-A1/2) |

if k(D) <k(© then
k(D)  k(0)

end if

k'« argmax{ Xg(k®), ..., Xp(kD)}

Use quadratic interpolation [Ser97] of Xg(K) in the vicinity of K’ to estimate the
frequency f D and amplitude a, of a time-invariant sinusoidal partial assumed to
underlie the local maximum

Estimate the Fourier spectrum in the vicinity of the assumed sinusoidal component,
weight it with w(p, Fj) (see (4.57)), take absolute values, and add result to Xp(k)

p—p+l

end while

nal. Thisisfollowed by the cancellation of the detected sound, and the estimation is then itera-
tively repeated for the residual. Depending on the number of FOs to extract, |, the estimation
step has to be repeated | times and the cancellation step | — 1 times. The estimation part has
already been described, therefore only the cancellation procedure remains to be presented.

We use T; to denote the period of a sound detected at iteration i. The effect of 1; is cancelled
from the mixture signal by performing cancellation separately for the two parts, A;(t1) and
A,(1), in (4.55). The algorithm which implements the cancellation for the A;(t) part is given
in Table 5. The agorithm performs harmonic selection in the same way as in Table 3 but con-
siders only one period value T = T;. Also, instead of cumulating amplitudes of the harmonics
to A,(1), the parameters of the sinusoidal partials are estimated and further used to estimate
the magnitude spectrum in the vicinity of the partials. The magnitude spectra of the partials of
all detected sounds are cumulated to X (k) which represents the resolved harmonics of all
detected sounds. A residual magnitude spectrum Xg(k) is obtained by subtracting X (k)
from the initial magnitude spectrum |X(k)| and by constraining resulting negative values to
zexo.

The mechanism how the cancellation affects the estimation part is that, at iterations i > 1, the
residual spectrum Xg(K) is used instead of the mixture spectrum X(k) when calculating
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A,(1) in Table 3. At thefirst iteration, Xz(k) =|X(k)| and either one can be used.

A certain characteristic of the algorithm in Table 5 is important and deserves special mention-
ing. Before adding the partials of a detected sound to X (K), they are weighted by the mod-
eled resolvability w(p, F), in the same way as in the estimation part in Table 3. This has the
consequence that the higher-order partials are not entirely removed from the mixture spectrum
when the residual Xz(K) is calculated. This principle is very important in order not to corrupt
the sounds that remain in the residua spectrum and have to be detected at the coming itera-
tions. For example, consider alow-pitched sound with FO 70Hz. If all frequency components at
the positions of the harmonics of this sound would be removed from the mixture spectrum, the
residual would become severely corrupted. Also, it is very unlikely that the parameters of the
harmonics could be reliably estimated up to the 20th partial. The described weighting limits
the effect of cancellation to the most important harmonics of each sound.

In principle the weights w(p, F) in Tables 3 and 5 are completely independent and would not
need to be a“matched pair” in any way. However, the interpretation of the weightsis the same
in both cases and therefore it islogical to use the same values. In Table 5, the interpretation is
that we can subtract only resolved harmonics because the frequencies of individual unresolved
partials are not known.

For the A,(1) part, the cancellation is somewhat more complicated. However, the background-
ing analysis was aready presented in Sec. 4.2.4 and the results can now be applied here.
According to (4.54), A,(1) is computed using the convolutions spectra V'(k) at different
channels c. Cancelling the effect of a detected period T; can thus be achieved by cancelling the
effect of T; from V_'(K) at different channelsc.

The cancellation procedure presented in the following is based on the assumption that the
detected sound consists of partials with constant inter-harmonic frequency intervals
ki = K/%, at each channel. In this case, the sound causes peaks to |V'(K)| at positions mk; ,
where mteger m= 0. This can be easily seen by looking at the definition of V (k) in (4. 25)1.
By assuming that the peak at the position k; is due to the detected sound only, the effect of the
detected sound at multiples mki, m = 2,3, ... canbe predicted (approximated) based on the
value |V (ki)|. The values |V (kj)| at different channels have already been computed to
obtain A,(;) in (4.54).

An expression for predicting |V (mk;j)|? based on |V (ki)|? is given by (4.69). However, in
order to avoid evaluating the integrals in (4.69), the prediction formula is here formulated in
terms of magnitude spectra. This becomes

S H(DH, (mk; —1) S 3. mi
| He(WH(k -1) = VIS0 (I)

Derivation of the above formula isvery similar to that of (4.69) and is therefore not presented.
In addition to the assumptions of piecewise constant inter-partial intervals and spectral smooth-
ness, linear phases have to be assumed. Whereas linear phases cannot be assumed for all sound
sources, in practice the resulting error is sufficiently small. At first, the two approximationsin
(4.69) and (4.72) appear as contradictory. However, the difference is due to the fact that (4.72)

Vo (mki)| = [V (k) (4.72)

|ck.

1. Asdefined in (4.45), the difference between V (K) and V' (K) isthat the latter includes only the
amplitude envel ope spectrum on zero frequency, and not the distortion spectrum on 2 f c
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has been derived using (4.23) as a starting point instead of (4.20). The difference stems from
the asymmetry of (4.20) and (4.23) as mentioned in the footnote on page 38. Both approxima-
tions, (4.69) and (4.72), are usable.

Using (4.72), the effect of a detected sound (with period T;) on the convolution spectra
[V'(K)| at different channels c can be estimated. The values V' (ki) at different channels are
known and, as discussed above, the effect is assumed to be limited to the vicinity of positions
mk; in |V (K)|, whereinteger m=> 0. The effect of the detected sound can then be taken into
account when the next most likely period is decided. This can be efficiently implemented as
follows:

1. After having detected period T; at iteration i, the following data structures are produced:
« Compute vector AS). for the detected period T; and for &l channelsc as

A Vo

Cﬁv (kD) (4.73)
where ki = K/ T; and 30 denotes rounding towards nearest integer. Note that this is anal-
ogous to recalculating the part A,(t) for the detected period T = T; (the maximization in
(4.54) can be omitted when using the candidate generation procedure, as described in the
previous subsection). However, instead of summing the bandwise terms as in (4.54), they
are stored to the vector M), which represents the level of the unresolved harmonics of the
detected sound at different channels c. The algorithm in [P4] can be used without modifica-
tions to compute (4.73). 3

« Parallel to (4.73), compute vector J{) for the detected period ; and for all channels ¢ as

A§), = {noH LP(D(ED

. K/2—ki K/2—ki
Yok = 2 HOHi=D =% I 0. (4.74)
| = —K/2+k; | = —K/2+k;

By comparison with the decomposition of V (k) in (4.42), it can be seen that (4. 74) is
equivalent to computing VC(k) so that a unity value is substituted in place of X(k). I
practice, the values J_ . are efficiently obtained as a side-product when computing )\g

* Initidlize L;(k) ~ O for k=012,...,K/2. Then trandate the spectrum of the time-
domain wi ndow function to frequenues mRi , Where m = 1, 2, .... Take absolute values,
scale the spectra so that their maxima correspond to unity, and add the spectrato L;(k) .

2. The data structures computed at step 1 are used to cancel the effect of the detected sound at
the coming iterations. At the first iteration, A, (1) is calculated ssimply according to (4.54).
Atiterationsi = 2,3, ..., thefollowing formulareplac&s(4 54):

Vg c k
A (T) = max [n H V.'(K) z ZD_ (K)A 1> ' (4.75)
2 KOKy .0 ° g /81 © ‘ &40 & ED

In the above formula, the first part equals (4.54). The second part subtracts the amount
which is predicted to be due to the already-detected sounds. As an example, let us consider
the second iteration, i = 2. If k in the above formula is an integer multiple of K/,
where T, isthe period detected at the first iteration, then the value of L,(k) isunity. In this
case, the quantity )\gl) (J ¢ ko / J ) represents the amount that is predicted to be due to the
detected sound. If T = T, thevalueof JC ks /] ok isunity and the latter part of (4.75) sub-
tracts the same amount that is cumulated in the f| rst part and A,(T) becomes zero.




Table 6: Multiple-FO estimation error rates (%) of the proposed iterative method. The
performance of the FO estimator proposed in [P5] is shown as areference.

Anaysis | N umber of concurrent sounds (polyphony)
Method :
framesize| 1 2 3 4 5 6
46ms 31 | 87 15 22 29 36
Proposed method Bms | 13 | 50 [ 82| 11 | 16 | 19
190ms 1.1 | 36 | 6.2 | 93 13 16
Reference method 46ms 17 26 36 46 52 57
proposed in Publication [P3] Bms | 42 | 87 | 16 | 22 | 29 | 34
190ms 18 | 39 | 63 | 9.9 14 18

The presented cancellation procedures are not computationally demanding. Also, it should be
noted that the part A,(1) is calculated only for a small subset of candidate values T O T (sub) -
In practical implementations, the data structures L; (k) can be computed on-the-fly in (4.75) to
reduce memory usage.

4.2.8 Multiple-FO estimation results

Simulations were run to validate the proposed auditory-model based multiple-FO estimation
method. The acoustic database was the same as that used in [P5]. It consists of samples from
four different sources. the McGill University Master Samples collection [Opo87], University
of lowa website [low04], IRCAM Studio Online [IRC04], and independent recordings for
acoustic guitar. There were altogether 30 different musical instruments, comprising brass and
reed instruments, strings, flutes, the piano, and the guitar. The total number of samples was
2536 and these were randomly mixed to generate test cases. The instruments marimba and the
vibraphone were excluded from the data set since these do not represent harmonic sounds (see
Sec. 3.1) and the proposed method admittedly does not work very reliably for these instru-
ments. Sampling rate was 44.1kHz.

Semirandom sound mixtures were generated by first allotting an instrument and then arandom
note from its whole playing range, restricting, however, the pitch over five octaves between
65Hz and 2100Hz. The desired number of simultaneous sounds was alotted and then mixed
with equal mean-square levels. The acoustic signal was fed to the proposed multiple-FO
method which estimated the FOs in a single time frame, 100ms after the onset of the sounds.
The number of concurrent sounds, i.e., the number of FOs to extract, was given along with the
acoustic mixture signal. The parameters of the system were fixed, except the parameter w,
which was varied according to the size of the analysis frame, as described in Sec. 4.2.5.

A correct FO estimate was defined to deviate less than half a semitone (£3%) from the true
value, making it “round” to a correct note on a Western musical scale. Errors smaller than this
are not significant from the point of view of music transcription. The error rate was computed
as the number of erroneous FO estimates divided by the number of FOs presented. One thou-
sand mixture signals were generated per each polyphony and the error rates were averaged
over these.

Table 6 shows the multiple-FO estimation results of the proposed method. The set of values
TOT applied when computingh ;(T) in Table 3wasuniform, i.e, AT = 1 was constant (see
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Figure 27. Multiple-FO estimation error rates using the proposed algorithm. Bars represent
the overall error rates, and the different shades of gray the error cumulation in iteration.

Table 3). In computing A,(T), a candidate generation procedure with |T g,)| = 15 was
applied in al cases (see Sec. 4.2.6). Values beyond 15 did not bring additional performance
improvement. In computing the Fourier spectrum in (4.21), the analysis window was always
zero-padded to the length 8192 samples (190ms).

As a general impression, the proposed auditory-model based method is very accurate and is
able to handle the diversity of the acoustical material involved. For example, the error rate for
four-voice polyphonies and 93ms analysis window was 11 %, meaning that 3.56 sounds out of
four were correctly estimated on the average. In increasing polyphony, the error rate grows
gradually but the method does not break up at any point.

A particularly attractive feature of the proposed method isthat it works accurately in relatively
short analysis frames. For comparison, the last three rows of Table 6 show the results for the
algorithm proposed by usin [P5]L. It is fair to say that the latter algorithm breaks down when
the analysis frame becomes shorter than 93ms. Even for the 93ms frame size, the method pro-
posed here is significantly better. The superiority of the auditory-model based approach in
short analysis frames is due to the fact that the method does not attempt to resolve individual
higher-order partials, but these are represented collectively by the amplitude envelope spec-
trum V.'(K) in (4.54).

Another attractive feature of the method proposed here is that it comprises only few free
parameters. The three parameters that had to be tuned were w, which determines the balance
of the two partsin (4.55), the degree of compression, v, and the scaling factor for the subband
widths u,. Among these, only w,, is completely “free” in the sense that it cannot be deduced
from known psychoacoustic quantities.

Figure 27 illustrates error cumulation in the iterative estimation and cancellation process. The
bars represent the overall error rates as a function of the number of concurrent sounds. The dif-
ferent shades of gray in each bar indicate the error cumulation in the iteration, errors which
occurred in thefirst iteration at the bottom, and errors of the last iteration at the top. As can be
seen, the error rate approximately doubles when the analysis frame is shortened from 93ms to
46ms. The difference between 186ms and 93ms framesis not very big.

Figure 28 shows the error rate of the proposed method as a function of the FOs of the target
sounds which were presented to the system. The number of concurrent sounds (polyphony)

1. The accuracy of the reference method has been compared with that of trained musiciansin [P5].
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Figure 28. Multiple-FO estimation error rate of the proposed method as a function of the

FOs of the target sounds. The number of concurrent sounds was four in this experiment.

was four in this experiment. The error rate for FO value 523Hz, for example, was computed by
counting the number of sounds with FO 523Hz that were not detected by the method, and
dividing this by the number of sounds with FO 523Hz that were presented to the system. As can
be seen, very low-pitched or high-pitched sounds were more often incorrectly estimated. Musi-
cal sounds at the both ends are typically more difficult to handle, due to their irregularity.

The presented method remains incomplete in the sense that mechanisms for suppressing addi-
tive noise or for estimating the number of concurrent sounds were not presented. These will be
considered in Chapter 6. Also, the method proposed in this chapter comprises many directions
of potential further improvement that have not yet been explored. For example, the expectation
values of A(1) for different T were not balanced in any way. It is possible that the method has
apreference towards high or low FOs, although this has not been verified. Also, many details of
the method are not necessarily the optimal ones but, rather, examples of well-working solu-
tions. It isamatter of future research to optimize these details.
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5 Previous Approachesto Multiple-FO Estimation

In Chapter 3, different approachesto single-FO estimation were reviewed. The am of multiple-
FO estimation isto find the FOs of all the component sounds in a mixture signal. An instance of
such an agorithm was proposed in Chapter 4. The complexity of the multiple-FO estimation
problem is significantly higher than that of single-FO estimation. Some intuition of this can be
developed by comparing the spectrum of a harmonic sound with that of a mixture of four har-
monic soundsin Fig. 29.

Multiple-FO estimation is closely related to sound separation. An algorithm that is able to esti-
mate the FO of a sound in the presence of other soundsis, in effect, al'so organizing the respec-
tive spectral components to their sound sources [Bre90, p.240]. Regardless of whether this
organization takes place prior to the FO estimation or vice versa, the two are closely related.
Also, multiple-FO estimation raises a number of problems that need not be addressed in single-
FO estimation. To name a few examples, concurrent sounds in certain FO relationships may
cause a non-existing sound to be detected, such as the root of a chord in its absence. Also, the
partials of concurrent sounds often coincide in frequency, in which case the parameters of the
partials can no more be directly estimated from the spectrum. In practical music transcription
tasks, the number of concurrent sounds has to be estimated.

The diversity of approaches taken towards multiple-FO estimation is even wider than that in
single-FO estimation. The aim of this chapter isto review the previous work in this area.

5.1 Historical background and related work

Music signals can be viewed as the “home ground” for multiple-FO estimation, in the same
way as speech signals are the principal target signals for single-FO estimation. The first multi-
ple-FO algorithms were designed for the purpose of transcribing polyphonic music. These
attempts date back to 1970s, when Moorer built a system for transcribing duets, i.e., two-voice
compositions [M0075,77]. The work was continued by Chafe and his collegues [Cha82,86a,b].
At the same time, the problem was independently studied by Piszczalski [Pis86]. Further
advances were made by Maher [Mah89,90,94] and de Cheveigné [deC93]. However, the early
systems suffered from severe limitationsin regard to the pitch range and relationships of simul-
taneous sounds, and the polyphony was restricted to two concurrent sounds. Attempts towards
higher polyphony were made by limiting to one carefully modeled instrument [Haw93,
Ros98b], or by allowing more errors to occur in the output [Kat89, Nun94].

More recent music transcription systems have recruited psychoacoustically motivated analysis
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Figure 29. An example of the spectrum of aharmonic sound (left) and that of a mixture of
four harmonic sounds (right).
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principles [Kas95, Ste99, God99], models of the human auditory periphery [Mar96b, deC99,
God99, Tol00], Bayesian inference techniques [Kas95, Got01, Dav03], processing architec-
tures from the artificial intelligence domain [Mar96a,b, God99, Got01], and sparse coding
methods [Vir03, Abd _]. Each of these areas will be examined in more detail in Sec. 5.2.

As mentioned above, multiple-FO estimation and sound source separation are closely linked.
The human auditory system is very effective in separating and recognizing individual sound
sources in mixture signals. This cognitive function is called called auditory scene analysis
(ASA). Computational modeling of ASA has been a subject of increasing interest since 1990
when Bregman put together his influential work describing the principles and mechanisms of
the psychology of ASA in humans[Bre90]. Doctoral theses on the various aspects of computa-
tional ASA (CASA) were prepared by Mellinger [Mel91], Cooke [C0091,94], Brown
[Bro92a,94], and Ellis [EII96]. More recent overviews of this field can be found in [Ros98a]
and [Coo01a]. From the point of view of multiple-FO estimation, the research in CASA has not
produced as many practical methods as e.g. the models of the more peripheral parts of hearing,
such as the unitary pitch model described in Chapter 3 [Med91a,b]. This is partly due to the
fact that CASA in genera is concerned with all types of sound sources and in practice often
related to noise-like or speech sounds.

Separation of speech from interfering speech or other sounds is an important special area of
sound separation. Early work on this problem has been done by Parsons [Par76] and Weintraub
[Wei86]. They concentrated on utilizing the pitch information to carry out the task. More
recently, Wang and his colleagues have focused on using the pitch information for speech seg-
regation [Wan99, Hu02]. A multipitch tracking algorithm for noisy speech was presented in
[Wu02]. However, consonants are the main carriers of information in speech signals and
speech is voiced only part of the time. Multiple-FO estimation alone would be more appropri-
ate for separating singing from interfering singing, although e.g. Parsons reports that “normal
speech separated by the process in its present form not only is intelligible, but also gives the
illusion of preserving most of the recovered talker’s consonants’. Despite this valid observa-
tion, other techniques prevail in noise-robust speech recognition. The “missing data” approach
is another separation-oriented approach to noise-robust speech recognition and is not limited to
the voiced parts only [Bar01, Coo01b]. This line of research attempts to identify the spectro-
temporal regions that represent the target speech and is more closely connected to CASA in
general. Okuno et al. and Nakatani et al. applied two microphones to utilize directional infor-
mation along with harmonicity in separating two simultaneous speakers [Oku99, Nak99].

5.2 Approachesto multiple-FO estimation

It is difficult to categorize multiple-FO estimation methods according to any single taxonomy.
This is because the methods are complex and typically combine several processing principles.
As a consequence, there is no single dimension which could function as an appropriate basis
for categorization. However, some main viewpoints to the problem can be discerned and it is
the aim of this subsection to introduce these.

Table 7 lists the characteristic attributes of ten different multiple-FO estimation methods. The
given list of methods is not intended to be complete. Instead, an attempt was made to select
two representative and good examples from each of the main viewpoints to the problem. For a
comprehensive historical overview of FO estimation methodsin music, see[Hai01]. In Table 7,
mid-level representations refer to the data representations that are used between the acoustic
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Table 7: Characteristics of some multiple-FO estimation methods

Reference| . Mam. Mld-leve'l Knowledge applied Computation Evaluation material
viewpoint| representations
Kashinoet| knowl- sinusoidal tracks | e partial grouping: harmonicity, onset timing * musical: chord-note Bayesian probability net- | e statistical evaluation ¢ random mixtures
al., 1995 | edge inte- relations, statistics of chord transitions * sound sources: tone memory, | work; conceptually based on | of acoustic samples from five instruments
gration timbre model space, automatic tone modeling blackboard model * max polyphony 3
Sterian, |perceptual| sinusoidal tracks | e partial grouping: harmonicity, onset and offset timing, low partial | evaluation of grouping likeli- « short example cases, one per each
1999 grouping support, partial gap, partial density hoods, multiple-hypothesis | polyphony 1—4 « sample-based synthesis
of partials tracking with a fixed instrumentation
de Chev- | auditory |unitary pitch model: * harmonicity, « implicit knowledge of human pitch perception iterative estimation and can- |e statistical evaluation ¢ synthetic perfectly
eigné et | modeling | SACF, subchannel cellation periodic sounds ¢ pitch range less than an
al., 1999 signals octave * max polyphony 3
Tolonenet| auditory | simplified unitary * harmonicity, « implicit knowledge of human pitch perception efficient version of the unitary [ <+ example cases of musical chords and
al., 2000 | modeling pitch model: pitch model, no iteration but | mixed speech signals, noisy and clean ¢
SACF “enhancing” SACF statistical evaluation shown in [P5]
Martin, knowl- Log-lag correlo- * partial grouping: harmonicity, ¢ musical: rules governing tonal Blackboard architecture * example transcription cases * piano per-
1996 | edge inte- gram, SACF music, * implicit knowledge of human pitch perception, * “garbage- formances of four-voice Bach chorales in
gration collection” heuristics 18th century counterpoint style
Godsmark| knowl- auditory model: * grouping cues for strands: harmonicity, onset and offset timing, Blackboard architecture * short example cases * acoustic data from
etal., |edgeinte-| synchrony strands | time-frequency proximity, common movement, * musical: detect and sample-based MIDI synthesizer * max
1999 gration with features utilize recurrent melodic phrases, metrical predictions, * stream for- polyphony 6
mation: pitch and timbre proximity
Goto, signal estimated spectral |e signal model: multiple notes, note partials have a Gaussian spectrum | Maximum a posteriori (MAP) | e detection of the melody and bass lines
2001 model | power distribution | centered at harmonic positions, * fone models which are estimated, | estimation using expectation (predominant-F0) on real-world CD
in one analysis | * prior distributions for parameter values, * musical: frequency ranges | maximization (EM) algorithm recordings
frame for melody and bass, temporal continuity of bass/melody
Davy et signal | time-domain signal| < signal model: multiple notes, notes may have inharmonic partials Bayesian model, variable | ¢ example cases * results shown for poly-
al., 2003 model (represented as time-localized sinusoids), non-white residual noise, dimension Markov chain phonies 1-2
« prior distributions for parameter values Monte Carlo (MCMC) sam-
pling of posterior likelihoods
Virtanen, | sparse | magnitude spectro- | ¢ simple source mixing model, * cost function which minimizes the | algorithm which combines |« demo signals for real-world CDs ¢ drum
2003 coding | gram, sources have | reconstruction error while preserving the sparseness of sources and |projected gradient descent and transcription
constant spectrum temporal continuity of their gains a multiplicative step
& time-varying gain
Abdallah | sparse | magnitude spectro- | ¢ simple source mixing model, ¢ reconstruction error minimization, | modified quasi-Newton opti- [+ MIDI synthesis of keyboard music * max
etal., coding | gram, sources have favouring sparseness of sources mizer, gradient-ascent infer- polyphony 3
unpub- constant spectrum ence of sources, maximum-
lished & time-varying gain likelihood learning of gains
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Figure 30. Time-frequency representation of a mixture of two harmonic sounds: A cello
sound (FO 310Hz) setting on at 250ms and a saxophone sound (FO 250Hz) setting on at 1.0s.

input and the final analysis result. Often afront-end of some kind is used to transform the input
data to a more accessible form before the more complex reasoning takes place. The column
titled knowl edge applied lists the types of knowledge that are utilized in performing the analy-
sis. In music signals, very diverse sources of knowledge are available, relating to physical
sound production, to music theory, and to the human auditory perception, for example. The
column computation summarizes how the actual computations are carried out, given the data
representations and the knowledge to use. The evaluation column gives an idea of the target
material of each system.

In the following, the methods are described in more detail. Subheadings are provided to
improve readability but it should be remembered that the cited papers really cannot be put
under asingle label.

5.2.1 Perceptual grouping of frequency partials

CASA isusualy viewed as a two-stage process where an incoming signal is first decomposed
into its elementary time-frequency components and these are then organized to their respective
sound sources. Provided that this is successful, a conventional FO estimation method could be
used to measure the FO of each of the separated component sounds, or, in practice, the FO esti-
mation often takes place as a part of the organization process already.

The organization part is the most complicated one among the above-mentioned processing
stages. An important step forward in this area was to discover a set of perceptual cues which
promote the grouping of time-frequency components to a same sound source in human listen-
ers. The “cues’ are measurable acoustic features of the elementary time-frequency compo-
nents. In [Bre90], Bregman points out the following cues. proximity in time-frequency,
harmonic frequency relationships, synchronous changes in the parameters of the components,
and spatial proximity (i.e., the same direction of arrival).

Figure 30 shows the spectrogram of a mixture of two harmonic sounds, a cello sound and a
saxophone sound. Many of the above-mentioned cues are visible in the figure. The partials of
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the cello sound start 750ms before the saxophone sound and exhibit synchronous frequency
modulation. Also, the partials within each sound are in harmonic relationships athough, due to
the inharmonicity phenomenon described in Sec. 3.1, perfect harmonicity cannot be assumed.
These features are effectively used by the auditory system in order to “hear out” each of the
two sounds. An example of coinciding partials can be seen at the frequency band around
1200Hz.

Temporally continuous sinusoidal components, sinusoidal tracks, have often been used as the
elementary components for which the mentioned features are measured [Kas93,95, Ste99,
Vir00]. Reliable extraction of these componentsin real-world music signalsis not as easy as it
may seem. Pioneering work in this area has been done by McAulay and Quatieri [McA86] and
Serra [Ser89,97], and the work has been continued by several authors [Dep93,97 Rod97,
Go0097, Ver97,00, Lev98, Vir01]. More recently, also auditorily-motivated representations have
been used as the mid-level representation [God99].

Kashino et al. brought Bregman's ideas to music scene analysis and also proposed several
other new ideas for music transcription [Kas93, 95]. The front-end of their system used a
“pinching plane method” to extract sinusoidal tracks from the input signal. These were clus-
tered into note hypotheses by applying a subset of the above-mentioned perceptual cues. Har-
monicity rules and onset timing rules were implemented. Other types of knowledge were
integrated to the system, too. Timbre models were used to identify the source of each note and
pre-stored tone memories were used to resolve coinciding frequency components. Chordal
analysis was performed based on the probabilities of the notes to occur under a given chord.
Chord transition probabilities were encoded into trigram models (Markov chains). For compu-
tations, a Bayesian probability network was used to integrate the knowledge and to do ssimulta-
neous bottom-up analysis, temporal tying, and top-down processing (chords predict notes and
notes predict components). Evaluation material comprised five different instruments and poly-
phonies of up to three simultaneous sounds. The work still stands among the most elegant and
complete transcription systems. Later, Kashino et al. have addressed the problem of source
identification and source stream formation when the FO information is given a priori [Kas99].

The PhD work of Sterian was more tightly focused on implementing the perceptua grouping
principles for the purpose of music transcription [Ste99]. Sinusoidal partials were used as the
mid-level representation. These were extracted by picking peaks in successive time frames
using modal distribution and then by applying Kalman filtering to estimate temporally continu-
ous sinusoidal tracks. Sterian represented the perceptual grouping rules as a set of likelihood
functions, each of which evaluated the likelihood of the observed partials given a hypothesized
grouping. Distinct likelihood functions were defined to take into account onset and offset tim-
ing, harmonicity, low partial support, partial gap, and partial density (see [Ste99] for the defini-
tions of the latter concepts). The product of all the likelihood functions was used as a criterion
for optimal grouping. While an exhaustive search over all possible groupingsis not possible, a
multiple-hypothesis tracking strategy was used to find a suboptimal solution. For each new
partial, new competing hypotheses were formed and the most promising hypotheses were
tracked over time. Evaluation results were given for a small test set with 1-4 concurrent
sounds.

Godsmark and Brown used an auditory model as afront-end to extract “synchrony strands’ for
which the grouping cues were extracted [God99]. The latter system is introduced in more
detail in Sec. 5.2.3. Nakatani and Okuno have used the spatial proximity cue along with the
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other cues to separate the voiced sections of several simultaneous speakers [Nak99, Oku99]. A
deterministic way of encoding the partial grouping principles has been proposed by Virtanen
and Klapuri in [Vir00].

5.2.2 Auditory-model based approach

The unitary pitch model of Meddis et al. (see Chapter 3) has had a strong influence on FO esti-
mation research in general [Med91a,b, 97]. While Bregman’s theory is primarily concerned
with the psychology of auditory perception, the unitary model addresses the more peripheral
(largely physiological) parts of hearing. Although multipitch estimation in sound mixtures was
not addressed, research to this direction was inspired, too. The method proposed in Chapter 4
belongs to this category.

de Cheveigné and Kawahara extended the unitary model to the multiple-FO case. They pro-
posed a system where pitch estimation was followed by the cancellation of the detected sound,
and the estimation was then repeated for the residual signal [deC99]. The iterative approach to
multiple-FO estimation was originaly proposed by de Cheveigné in [deC93], where also a
comprehensive review of the previous harmonic selection and harmonic cancellation models
was given. In [deC99], the cancellation was performed either by channel selection as in the
concurrent vowel identification model of Meddis et al. [Med92], or, by performing within-
channel cancellation filtering. In addition, a computationally exhaustive joint estimator was
proposed where the FOs of two concurrent sounds were simultaneously estimated. Although
the evaluation results were presented for a rather artificial and perfectly periodic data set, the
proposed iterative approach was indeed a successful one.

Tolonen and Karjalainen developed a computationally efficient version of the unitary pitch
model and applied it to the multiple-FO estimation of musical sounds [Tol00]. In pitch compu-
tations, only two frequency bands were used instead of the 40—120 bandsin the original model,
yet the main characteristics of the model were preserved. Practical robustness was addressed
by flattening the spectrum of an incoming sound by inverse warped-linear-prediction filtering
and by using the generalized ACF method (see Sec. 3.3.1) for periodicity estimation. Exten-
sion to multiple-FO estimation was achieved by cancelling subharmonicsin the summary auto-
correlation function which is produced by the model. From the resulting enhanced summary
autocorrelation function, all FOs were picked without iterative estimation and cancellation.
The method is relatively accurate and it has been described to sufficient detail to be exactly
implementable based on [Tol00]. Statistical evaluation of the method can be found in [P5].
Also, Karjalainen and Tolonen have proposed iterative approaches to multiple-FO estimation
and sound separation using the described simplified auditory model [Kar99b].

5.2.3 Emphasison knowledge integration: Blackboard architectures

As aready mentioned, content analysis of audio signalsis a many-faceted process and involves

the use of both acoustic data and prestored internal models [Bre90, Ell196]. Meaningful integra-

tion of the various processing principles has turned out to be very difficult. A list of require-

ments for a flexible and extendable system architecture comprises at |east the following:

» Analysisagorithms and datatypes of very different kinds can be integrated to the system.

» After being encapsulated to the architecture, the individual agorithms collaborate and com-
pete without explicit reference to, or knowledge of, each other.

» The architecture should make it relatively easy to add and remove processing modules.
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Figure 31. Overview of the blackboard architecture (reprinted from [Kla01b]).

» System should be able to handle uncertain data, and let several aternative explanations
evolve side-by-side.

Blackboard systems, originally developed in the field of artificial intelligence, meet several of
the above-mentioned architectural needs [Nii86, Rus95]. Figure 31 illustrates the three main
components of a blackboard architecture. The name blackboard refers to the metaphor of a
group of experts working around a physical blackboard to solve a problem. The blackboard is
hierarchy of data representations at different abstraction levels. Representations for audio con-
tent analysis have been proposed e.g. in [KIa95, EII95,96]. The state of the analysis is com-
pletely encoded in the hypotheses on the blackboard. This data is common to a number of
autonomous knowledge sources, i.e., processing algorithms which manipulate the data when
requested. The control component decides when each knowledge source is activated. The
design of this part largely determines the successfulness of a blackboard system in integrating
the functional entities (knowledge sources) [Car92].

In [Mar96a,b], Martin proposed a system for transcribing piano performances of four-voice
Bach choraes. In his system, an auditory model (log-lag correlogram of Ellis [EII96]) was
used as a front-end to a blackboard model which employed knowledge about physical sound
production, rules governing tonal music, and “garbage collection” heuristics. Support for FOs
was raised on a frame-by-frame basis and then combined with the longer-term power-envel ope
information to create note hypotheses. Musical rules favoured FOs in certain intervallic rela-
tions. The knowledge sources consisted of precondition—action pairs (cf. if—then structure). At
each time step, the control component evaluated the preconditions of the knowledge sourcesin
apriority order and executed the first whose precondition was satisfied.

A more recent model of Godsmark and Brown was particularly designed to facilitate the inte-
gration of the auditory organization principles described in Sec.5.2.1, and competition
between these [God99]. The system is quite complex and could equally well be introduced
under the Section 5.2.1 or 5.2.2. The applied auditory front-end produced “ synchrony strands’
which represented dominant time-frequency components at different bands [Co091]. These
were grouped to sound events by extracting features from each strand and by applying Breg-
man’s organization principles. Sound events were further grouped to their respective sources
(event "streams’) by computing pitch and timbre proximities between successive sounds.
Musical meter information was used to predict when events will occur and melodic pattern
induction to predict events in recurrent patterns. The model was evaluated by showing that it
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could segregate melodic lines from polyphonic music and to resolve interleaved melodies.
Transcription accuracy as such was not the main goal.

It is important to note that the blackboard architecture as such is merely a conceptual model,
primarily concerned with the implementation rather than the actual algorithms. It does not pro-
vide a computational model for knowledge integration. For this, probababilistic models, espe-
cially dynamic Bayesian networks [Mur_], are powerful modeling tools. Statistical methods
are a solid “common ground” for integrating diverse types of knowledge (acoustic data, inter-
nal models, musicological models etc.) and have served excellently for example in speech rec-
ognition. Kashino et al. used the Blackboard architecture as the backgrounding conceptual
model, but applied Bayesian networks to carry out the quantitative integration task. We have
proposed a blackboard architecture and a few related inference techniquesin [Kla01b].

5.2.4 Signal-model based probabilistic inference

It is possible to state the whole multiple-FO estimation problem in terms of a signal model, the
parameters of which should be estimated. Consider e.g. the model [Dav03]:

N M,

y(t) = Ez z a, mCos[maw,t] + bmmsin[moont]g + e(t) (5.1)
Eh =1lm=1 O

where N is the number of simultaneous sounds, My, is the number of partialsin sound n, w, is

the fundamental frequency of sound n, and a,, ,,, b, ., together encode the amplitude and

phase of individual partials. The term g, isaresidual noise component.

In principle, all the parameters on the right-hand side of the above equation should be esti-
mated based on the observation y(t) and possible prior knowledge about the parameter distri-
butions. As pointed out by Davy et al. in [Dav03], the problem is Bayesian in the sense that
thereisalot of prior knowledge concerning music signals.

Davy and Godsill elaborated the above signal model to accommodate time-varying amplitudes,
non-ideal harmonicity, and non-white residual noise [Dav03]. A likelihood function for
observing y(t) given model parameters was defined. Prior distributions for the parameters
were carefully selected. Aninput signal was first ssgmented into excerpts where no note transi-
tions occur. Then the parameters of the signal model were estimated in the time domain, sepa-
rately for each segment. The main challenge of this approach isin the actua computations. For
any sufficiently realistic signal model, the parameter space is huge and the posterior distribu-
tion is highly multimodal and strongly peaked. Davy and Godsill used variable-dimension
Markov chain Monte Carlo sampling of the posterior, reporting that much of the innovative
work was spent on finding heuristics for the fast exploration of the parameter space [Dav03].
Although computatinally inefficient, the system was reported to work robustly for polyphonies
up to three simultaneous sounds.

Goto proposed a method which models the short-time spectrum of a music signal as a
weighted mixture of tone models [Got01]. Each tone model consists of afixed number of har-
monic components which are modeled as Gaussian distributions centered at integer multiples
of the FO in the spectrum. Goto derived a computationally feasible expectation-maximization
(EM) agorithm which iteratively updates the tone models and their weights, leading to a max-
imum a posteriori estimate. Temporal continuity was considered by tracking framewise FO
weightsin a multiple-agent architecture. Goto used the algorithm successfully to track the mel-
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ody and the bass lines on CD recordings in real-time. The algorithm utilized prior knowledge
of the typical frequency ranges for the melody and bass lines and favoured temporal continuity
of the two trajectories.

Although the overall system of Goto is relatively complex, the core EM a gorithm can be eas-
ily implement based on [Got01]. The algorithm estimates the weights of al FOs, but typically
only one (predominant) FO was found in our simulations, exactly as claimed by Goto. Goto’'s
signal model resembles that of Doval and Rodet for monophonic FO estimation [Dov9l].

5.2.5 Data-adaptive techniques

In data-adaptive systems, there is no parametric model or other knowledge of the sources.
Instead, the source signals are estimated from the data. Typicaly, it is not even assumed that
the sources (which here refer to indivitual notes) have harmonic spectral For real-world sig-
nals, the performance of e.g. independent component analysis alone is poor. However, by plac-
ing certain restrictions for the sources, the data-adaptive techniques become applicable in
realistic cases. Such restrictions are e.g. independence of the sources and sparseness which
means that the sources are assumed to be inactive most of the time.

Virtanen added temporal continuity constraint to the sparse coding paradigm [Vir03]. He used
the signal model

N
WO(f) = 5 a W) + (1), (52)
n=1

where WO (f) is the power spectrogram of the input, t is time, f is frequency, W, (f) isthe
static power spectrum of source n, and @ |, are time-varying gains of the sources. The term
WO(f) representsthe error spectrogram. Virtanen propsed an iterative optimization algorithm
which estimates non-negative &, , and ¥, (f) based on the minimization of a cost function
which takes into account reconstruction error, sparseness, and temporal continuity. The algo-
rithm was used to separate pitched and drum instruments in real-world music signals [Vir03,
Vir04].

Also Abdallah and Plumbley have applied sparse coding for the analysis of music signals
[Abd ]. Input data was represented as magnitude spectrograms, and sources as magnitude
spectra, leading to a source mixing model which isessentially the same asin (5.2). The authors
proposed an algorithm where sources were obtained using gradient-ascent inference and the
time-varying gains with maximum-likelihood learning. Their results were promising, although
shown only for one example case of synthesized Bach piece (2-3 simultaneous sounds). In this
case, the system learned 55 spectra, 49 of which were note spectra. The authors made a very
strong conclusion that “There is enough structure in music (or at least certain kinds of music)
for a sparse coder learn about and detect notes in an unsuperwised way, even when the musicis
polyphonic. There is no need to bring any prior musical knowledge to the problem, such asthe
fact that musical notes have approximately harmonic spectra” [Abd_]

5.2.6 Other approaches

An important line of research has been pursued by Okuno, Nakatani, and colleaques who have
demonstrated effective use of the direction-of-arrival information in segregating simultaneous
speakers [Nak99, Oku99]. The system in [Nak99] was designed to segregate continuous
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streams of harmonic sounds, such as the voiced sections of two or three simultaneous speakers.
Multiple agents were deployed to trace harmonic sounds in stereo signals. Then, the detected
sounds were cancelled from the input signal and the residual was used to update the parameters
of each sound and to create new agents when new sounds were detected.

The periodicity transform method of Sethares and Staley is an example of a mathematical
approach to multiple-FO estimation [Set99]. The algorithm finds a set of nonorthonormal basis
elements based on data, instead of using afixed basis as in the Fourier transform, for example.
The authors proposed a residue-driven sound separation a gorithm, where one periodic compo-
nent at a time was estimated and cancelled from the mixture signal, and this process was then
repeated for the residual. The overall approach bears a close resemblance to the iterative
method of de Cheveigné in [deC93].

Marolt has used neural networks for the different subproblems of music transcription [MarOla,
02]. In [MarO1a], the author proposes a system which is a combination of an auditory model,
adaptive oscillators, and neural networks. The unitary pitch model is first used to process the
input signal [Med91a,b]. Adaptive oscillators similar to those in [Lar94] were used to track
partials in the output of each channel. In order to track harmonically related partials, the oscil-
lators were interconnected to oscillator nets, one per each candidate musical note. A neural
network was then trained for each individual note in order to recognize whether the corre-
sponding note occurs at a given time or not. Good results were obtained for an evaluation set of
three real and three synthesized piano performances. A basic problem encountered was the
slow synchronization of the adaptive oscillators which caused problems especially with low
notes.

A potentially very successful approach in some applicationsis to focus on modeling a specific
musical instrument. This has been done e.g. in [Haw93, Ros98b, Kla98] where only piano
music was considered.
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6 Problem-Oriented Approach to Multiple-FO Estimation

This chapter serves as an introduction to Publications [P1], [P3], and [P5]. Among these, [P5]
proposes a “complete” multiple-FO estimation system in the sense that it includes mechanisms
for suppressing additive noise and for estimating the number of concurrent sounds in an input
signal. These problems were not addressed in Chapter 4, although they both have to be solved
in order to perform automatic transcription of real-world music signals. In publications [P1]
and [P3], in turn, two different principles are proposed to deal with coinciding frequency par-
tials. These are harmonic components which coincide in frequency with the partials of other
sounds and thus overlap in the spectrum. This problem is of particular importance in music, as
will be described in Sec. 6.4. The solution proposed in [P1] isintroduced in Sec. 6.4.3 and the
solution proposed in [P3] isintroduced in Sec. 6.4.2. Only the latter one is used in the overall
system described in [P5].

The methods in this chapter represent a very pragmatic approach to multiple-FO estimation.
The problem is decomposed into smaller subproblems and solutions to these are sought one-
by-one. Also, the various sources of error are analyzed and techniques of dealing with these are
sought for. In practice, these have turned out to be effective ways of improving a transcription
system.

Many of the principles to be presented in this chapter were already applied in Chapter 4. How-
ever, it should be noted that the system to be described here has been developed earlier.
Whereas the method in Chapter 4 isin many respects more elegant than that in [P5], an advan-
tage of the latter is that it constitutes an “explicit” reference implementation of many basic
mechanisms that are needed for successful multiple-FO estimation. Such an implementation is
quite instructive in understanding the acoustic and musical constraints of the problem, not only
the auditory point of view. Also, the system presented in [P5] is quite flexible with regard to
testing different system parameters and configurations.

6.1 Basic problemsof FO estimation in music signals

Fundamental frequency estimation in music signals is in many ways more challenging than
that in speech signals. In music, the pitch range is wide and the sounds produced by different
musical instruments vary alot in their spectral content. The inharmonicity phenomenon has to
be taken into account. Robustness in the presence of the interference of drums and percussive
instruments has to be addressed. Typicaly several harmonic sounds are playing concurrently
and harmonic components of different sounds coincide in frequency.

On the other hand, the dynamic (time-varying) properties of speech signals are more complex
than those of an average music signal. The FO values in music are temporally more stable than
in speech. It islikely to be more difficult to track the FOs of four simultaneous speakers than to
perform music transcription of four-voice vocal music.

The basic problems of multiple-FO estimation can be classified in four categories:

* Grouping problem. Given a mixture of harmonic sounds (possibly contaminated with
noise), how should the spectral components be organized to their sound sources? This issue
was discussed in length in Sec. 5.2.1. Due to the inharmonicity phenomenon (see Sec. 3.1),
the components of a harmonic sound cannot be simply assumed to reside at ideal harmonic
positions in the spectrum.
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» Computing the saliences (or, weights, see Sec. 4.2.2) of different FO candidates given the
partials of a sound. We use the term harmonic summation model to refer to the function
which calculates the salience of a hypothesized FO candidate given the parameters (ampli-
tudes, frequencies, phases) of its harmonic partials. This is complicated by the wide pitch
range and the variation in the musical instrument timbres.

» Noiserobustness. In the case that drums or percussive instruments are present, the signal-to-
noise ratio can be around zero dB from time to time.

» Cainciding frequency partials. In Western polyphonic music, it is rather a rule than an
exception that the partials of a harmonic sound overlap with the partials of other, concur-
rent, sounds. Thus, it does not suffice to merely group partials to sound sources but even
individual partials need to be shared between sources.

Proposed solutions to these problems are introduced in the following sections. Section 6.2
looks at the noise robustness problem. Sections 6.3.1 and 6.3.2 address the partial grouping
problem and sections 6.3.3 and 6.3.4 address the FO salience computation. Section 6.4
describes methods that can be used to resolve coinciding partials. Estimating the number of
concurrent sounds is not discussed but a method for this purpose can be found in [P5].

Technical details are not described here but can be found in the original publications. As an
exception, the predominant-FO estimation is described to a more detail because the publica-
tions where this was originally done ([KIa99a]) is not included in this thesis.

6.2 Noise suppression

The definition of “noise” is subjective and depends on the application. From the viewpoint of
performing multiple-FO estimation in music signals, everything except the partials of harmonic
sounds is considered as additive noise that should be suppressed. In practice, the non-harmonic
parts are mainly due to drums and percussive instruments.

Noise suppression has been extensively studied in the domain of speech processing. Speech
enhancement istypically based on the assumption that the background noise characteristics are
slowly-varying compared to the target speech signal. This enables a two-stage approach where,
first, the noise spectrum is estimated over alonger period of time and, secondly, the spectrum
of the noisy speech signal is weighted so as to suppress the noise component in the mixture
signal [Var98, Sta00]. The more or less standard methods of optimal Wiener filtering and spec-
tral subtraction are widely used. More recent advances can be found e.g. in [MarO1b, Gus02,
Wol03].

In music, the sounds of drums and percussive instruments are transient-like and short in dura-
tion, making it difficult to estimate the noise spectrum over a longer period of timel. Due to
this non-stationarity, the noise-suppression algorithm proposed in [P5] estimates and removes
noise independently in each analysis frame. The preprocessing method proposed in [P5] has
two goals. It suppresses additive noise and flattens the spectral shape of the target harmonic
sounds. The signal model assumed by the method is

W (f) = Wh(H)W(F) + W (1), (6.1)
where W, (f) is the power spectral density of an observed acoustic signal and W (f) isthe

1. Thisisdifficult but not impossible in theory. The same drum sounds typically occur repeatedly in
music.

80



4 L
10 S
N, S
) L L
: 10 %o 6
v 4
10° 3
22
10_2 I I I I ‘M"\mth‘\m § 0 1 1
100 200 500 1000 2000 5000 100 200 500 1000 2000 5000
Frequency (Hz) Frequency (Hz)

Figure 32. An example signal which contains two harmonic sounds and a snare drum sound
with SNR -3dB. Left panel shows the scaled power spectrum of the signal, (1/g)W,(f).
Right panel shows the warped-magnitude spectrum log(1 + (1/9)W,(f)).
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Figure 33. lllustration of the magnitude-warping transform y = In(1+ x), when x gets
values between zero and one (left), or between zero and 100 (right).

power spectrum of a vibrating system whose fundamental frequency should be measured (for
example a guitar string). The factor W, (f) represents the frequency response of the body of
the musical instrument and other convolutive noise which filters the signal of the vibrating
source. Elimination of W, (f) is often referred to as spectral whitening. Theterm W () rep-
resents the power spectrum of additive noise. The additive model assumes that the signal and
noise are uncorrelated.

Elimination of both W, (f) and W (f) isachieved in Publication [P5] by applying magnitude
warping which equalizes W, (f) and still allows the additive noise to be linearly subtracted
from the result. The power spectrum W, (f) is magnitude-warped as

W,(f) = InFL+ 2w (£, 6.2)
o 9 O

where the scaling factor g is adaptively calculated in each analysis frame so asto scale the level
of the additive noise floor W, (f) numerically close to unity. The amplitudes of the important
frequency partials of the vibrating system W, (f)W,(f), inturn, are assumed to be noticeably
above the additive noise floor. Figure 32 illustrates the scaled power spectrum of two harmonic
sounds and a snare drum sound before and after the magnitude warping. As can be seen in the
left panel, the noise floor is around a unity value (10°) after scaling, whereas the spectral
peaks are significantly above this (around 102). It follows that when the function In(1 + X) is
applied, additive noise goes through a linear-like magnitude-warping transform, whereas the
spectral peaks go through a logarithmic-like transform. The warped spectrum is shown in the
right panel. Figure 33 illustrates the magnitude-warping transform when the input is scaled in
different ways. As can be seen, the magnitude warping is close to a linear function for small
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Figure 34. A magnitude-warped spectrum before and after subtracting the estimated
noise spectrum. The example signal isthe same asin Fig. 32.

input values. This has the nice consequence that additive noise remains additive after the warp-

ing.

Additive noise is suppressed by applying a specific spectral subtraction on wy( f). A moving
average W, (f) over kIJy(f) is calculated on a logarithmic frequency scale and then linearly
subtracted from lJJy(f). More exactly, local averages were calculated at 2/ 3-octave bands
while constraining the minimum bandwidth to 100Hz at the lowest bands. The same band-
widths are used in the subsequent FO calculations and are motivated by the frequency resolu-
tion of the human auditory system and by practical experiments with generated mixtures of
musical sounds and noise.

The response W, (f) is strongly compressed by the logarithmic-like transform, since subse-
quent processing takes place in the warped magnitude scale. Additionally, the estimated addi-
tive noise component W (f) captures a significant amount of the convolutive noise, too,
because this becomes additive in the logarithmic-like transform.

The estimated spectral average LIjn(f) is linearly subtracted from kIJy(f) and resulting nega-
tive values are constrained to zero. The resulting preprocessed spectrum W, (f) isused by the
subsequent multiple-FO estimator. In [P5], the preprocessed spectrum W, (f) is denoted by
Z(Kk) in the discrete domain. For the sake of consistence, we use the same notation in the fol-
lowing.

Figure 34 shows the magnitude-warped spectrum before and after the spectral subtraction.
Thus, the right-hand panel of Fig. 34 is an example of the kind of noise-suppressed input spec-
trum Z(k) that functions as an input to the subsequent multiple-FO computations.

6.3 Predominant-FO estimation

Figure 35 shows the overview of the multiple-FO estimation method proposed in [P5]. A core
part of the method is the predominant-FO estimation module which computes the saliences of
different FO candidates in the presence of other harmonic sounds and noise. The term predom-
inant-FO estimation, as defined in Sec. 4.2.5, refersto the task of finding the FO of one (any) of
the harmonic sounds in a mixture signal. Initially, we did not rule out the possibility that the
algorithm would reveal all the component FOs simultaneously. However, as it turned out, the
algorithm often assigns the second-highest salience to a candidate which correspondsto half or

1. The magnitude-warping in (6.2) is closely related to p-law compression,
y = In[1+ ux]/In(1+ W), wheretheinput x is assumed to get val ues between zero and one and
the value of [ can be used to decide between alinear-like and alogarithmic-like compression.
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Figure 35. Block diagram of the multiple-FO estimator described in [P5] (reprinted
from [P5]).

twice the firstly detected correct FO (the same was observed for the auditory-model based
method as described in Sec. 4.2.7). The best solution we found for this symptom was to cancel
each detected sound from the mixture spectrum and to repeat the estimation step for the resid-
ual. Thisleadsto the iterative estimation and cancellation structure shown in Fig. 35.

The predominant-F0 algorithm was given in [P5] without explaining much how it was derived.
The aim of this subsection is to describe the line of thought and the involved decisions which
led to that particular algorithm.

All the processing in the proposed method takes place for the preprocessed spectrum Z(k)
(see Sec. 6.2 above) in one time frame of the input signal. Longer-term temporal processing is
not considered and phase information isignored.

6.3.1 Bandwise FO estimation

The proposed predominant-FO estimator calculates the saliences of different FO candidates
independently at different frequency bands and then combines the results to determine the glo-
bal saliences. The primary motivation for attempting bandwise FO estimation was to achieve
robustness in the presence of interfering sounds. When estimation isfirst performed at separate
frequency bands, interference (noise) in one band does not “leak” to the estimates at the other
bands. This provides flexibility when the bandwise results are combined later on and enables
the detection of FOs which, due to noise, are observable only at a limited frequency range.

Another issue addressed by the bandwise processing is the partial grouping problem. In asin-
gle time frame, long-term temporal features are not available but the partial have to be grouped
based on their frequencies only. According to (3.1), the higher harmonics may deviate from
their expected spectral positions and in this case even the intervals between them are not con-
stant. However, we can assume the spectral intervals to be piecewise constant at sufficiently
narrow bands. Thus we utilize spectral intervals between partials to group them at distinct fre-
guency bands, and then combine the results across bands in a manner that takes inharmonicity
into account. A third reason to resort to bandwise processing isthat it is an important principle
in the human auditory perception [Med91a, Bre90,p.247, Hou95,M00974].

Figure 36 illustrates the magnitude responses of the 18 frequency bands at which the bandwise
FO estimation takes place. For the sake of algorithmic flexibility, all calculations are performed
in the frequency domain. This has the advantage that bandwise operation can be achieved viaa
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Figure 36. Magnitude responses of the 18 frequency bands at which the bandwise FO esti-
mation takes place. Each band comprises a 2/3-octave region of the spectrum, constrain-

ing, however, the minimum bandwidth to 100Hz (reprinted from [P5]).
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single fast Fourier transform, after which local regions of the spectrum are separately proc-
essed.

6.3.2 Harmonic sdlection

Another defining characteristic of the proposed algorithm is that the salience of a hypothesized
FO candidate is calculated using only the frequency components which are considered to
belong to the corresponding sound. This principle, harmonic selection, was discussed in
Sec. 4.2.2 and has been originally proposed by Parsonsin [Par76]. Here, the mechanism that is
used to select the partials differs considerably from that in Sec. 4.2.2 but the basic idea is the
same. Using only the selected partials instead of the overall spectrum in FO computations pro-
vides some robustness in sound mixtures.

Bandwise saliences of different FO candidates are computed as follows. Let L(n) be a vector
of FO saliences at band b. Here n corresponds to the fundamental frequency F,, = f.n/K,
where K is the frame size and f is the sampling rate. Let Z, (k) be the preprocessed spec-
trum (as described in Sec. 6.2) which is additionally filtered with the response of the bandpass
filter at band b (the responses are shown in Fig. 36). The frequency components (or, bins) at
band b are denoted by k O [k, k,, + K, — 1] , where k, is the lowest bin at band b and K, is
the number of bins at the band. The bandwise saliences L, (n) are calculated by finding a
series of every nth frequency components at band b that maximizes

Ly(n) = mDa;; ®O{Z,(k, +m), Z,(ky+ m+n),...,Zy(k,+ m+n(I(m,n)-1))} ,(6.3)
where

J(m,n) = [(Ky—m)/n] (6.4)
is the number of the equidistant partials at the band and the function @ (i.e., the harmonic
summation model, see Sec. 6.1) remains to be specified later. Theset M = {0, 1, ...,n=-1}
contains the different offsets of the series of partials. The offset mis varied to find the maxi-
mum of (6.3), which is then stored in L(n). Different offsets have to be tested because the
series of higher harmonic partials may have shifted due to inharmonicity.

In (6.3), the problem of finding the partials that belong to the candidate FO is solved by defin-
ing that the group of equidistant partials which maximizes the function ® constitutes the
sought group of partials. The salience of the FO candidate n at band b is then defined as the
value of the function ® for those partials.

Figure 37 illustrates the calculations for a single harmonic sound at theband b = 12 between
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Figure 37. Harmonic selection according to (6.3) (reprinted from [P5]).

1100Hz and 1700Hz. The arrows indicate the series of frequency components which maxi-
mizes L,,(n) for thetrue FO (corresponding to n = 13 inthiscase).

The values of the offset m are further restricted to physically realistic inharmonicities, a subset
of M. The exact limit is not critical, therefore (3.1) with a constant inharmonicity factor
B = 0.01 can be used to determine the maximum allowable offset from the ideal harmonic
positions. In the extreme case where there is only one harmonic partial at the band (i.e.
J(m,n) = 1), inharmonicity is not allowed at all but the partial is selected from the ideal har-
monic position in the spectrum. As a consequence, the “ spectral-interval oriented” harmonic
selection in (6.3) reduces to a special case where spectral-location information is used for har-
monic selection.

6.3.3 Determining the harmonic summation model

The remaining problem is to determine the function @ in (6.3) which computes the salience of
a FO candidate n based on the magnitudes of the selected harmonic components. We use
F,, = fsn/K to denote the fundamental frequency corresponding to n. Also, we use Of" to
denote the set of the equidistant frequency bins at band b that maximizes (6.3) for candidate n.

The function @ was found via a two-stage process. As a starting point, we used a function
which estimates the perceived loudness of the set of the partials O{™ at band b. In the second
step, the function was parametrized and machine-learning techiques were used to find such
parameters that, “most of the time”, the function gives the highest salience to the correct FO.

Given that the set O{" for candidate n at band b contains at least one partial, the loudness of
the partials can be estimated as

~ d
Ly(n) = kD%@[LPX.](fk)o-z%nﬁe(fkﬁ}, (6:5)

where lbe(f) is the power spectral density of the input signal at bandband f,, = f.k/K is
the frequency of partial k (note that the above expression is used here as the background
model; the continuous power spectrum W, (f,) will be replaced by the noise-suppressed dis-
crete spectrum in the following). The exponent 0.23 performs power spectrum compression
according to a recent model of loudness perception [M0o097b] and the overall sum approxi-
mates the integral over the excitation pattern caused by partials O{" on a critical-band scale.
The coefficient

1. Inharmonicity isnot allowed for the lowest partials as described in the previous subsection (Sec. 6.3.2).
Consequently, there are frequency bands which do not contain any partials of a certain FO candidate n.
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Figure 38. The first 50 overtone partials of a harmonic sound (FO 140Hz) on a critical-
band scale. The dotted vertical lines indicate the boundaries of adjacent critical bands.
Expression (6.5) measures the area under the stepwise curve separately for each band b.

d
Fagre(fi) (6.6)

is the inter-partial interval around partial k on a critical-band scale. The mapping e(f) from
the linear frequency scale to the critical-band scale is given by (4.6). Figure 38 illustrates the
spectral areathat is summed in (6.5), one critical band at atime. (Note that this model of loud-
ness is simplified and does not limit the effect of the lowest partials to one critical band around
the partials.)

By derivating, it turns out that (6.6) isequal to aF /u(f,), where u(f,) isthe ERB value of
the auditory filter centered on f, and a is a constant scalar which can be omitted. Note that
this is equivalent to the concept of resolvability as defined in (4.57) on page 50. In order to
smplify (6.5), wereplace u(f,) by the bandwidths f K /K of the FO estimator (see Fig. 36).
The coefficient in (6.6) then, can be replaced by n/ K, and (6.5) can be written in asimplified
form as

L,(n) = Kﬂ W, (f,)0%. (6.7)

bk Q)

In a subsequent step, the above formula was parametrized and machine learning techniques
were used to find the optimal values of the parameters. In the parametrized formula,
1/J(m, n) is used asthe variable in place of n/K,. These two are closely related, as can be
seenin (6.4). Also, W, (f ) 023 isreplaced by the discrete preprocessed spectrum Z(n) . The
preprocessing step involves compression and allows us to omit the exponent 0.23. The para-
metrization of (6.7) isgiven as

Lo(n) = %°+a13(—rr11,_n)5m -z, 6.8)

where the parameters a, and a, areto be learned™.

A well-posed machine-learning problem requires the definition of the task to do, the perform-
ance measure to use, and the experience from which to learn [Mit97]. Here, the task assigned
to the algorithm was to estimate the FOs of isolated musical sounds. The performance measure
used was the percentage of cases where the maximum of L (n) at different bands corre-
sponded to the true FO of the sound in question. The learning algorithm had access to the cor-

1. It should be noted that the formulain (6.8) can no more be considered as estimating the loudness of
partials Ot()”) . Thisis due to the described departures from the original model in (6.5). The loudness
model was used as a starting point but precise modeling of loudness as such is not of interest here.
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Figure 39. Bandwise-calculated FO saliences L (n) for two piano tones. The vectors are
displaced vertically for clarity. The true FOs of the two sounds are 65Hz and 470Hz in the
left and right panels, respectively, and are indicated with dashed vertical lines (reprinted
from [P3]).

rect FOs of the sounds and attempted to improve the measure of success by changing the values
of the coefficients a, and a, . Asaresults, thevaluesa; = 0.25 and a; = 0.75 werelearned.
A second-order polynomial of 1/J(m, n) wastrained, too, but it did not perform significantly
better than the first-order model which was therefore taken into use.

Thus, the function in (6.3) which computes the salience L, (n) of a FO candidate n at a fre-
guency band b becomes

u J(m, n) 0
Lp(n) = M&X fe(m,n) % Zy(k, +m+n(j-1))0, (6.9)
mUM] & ]
j=1
where
c(m,n) = 0.25+0.75/J3(m, n) (6.10)

and J(m, n) isasdefinedin (6.4).

6.3.4 Cross-band integration and estimation of the inharmonicity factor

Figure 39 shows the calcul ated salience vectors L, (n) at different bands for two isolated piano
tones. The vectors are arranged in increasing band center frequency order. As expected, the
maximum salience is usually assigned to the true FO, provided that there is a harmonic partial
at that band. The inharmonicity phenomenon appears in the the two panels: the fundamental
frequencies show arising trend as a function of band center frequency.

The bandwise FO saliences are combined to yield a global FO estimate. A straightforward sum-
mation across the salience vectors does not accumulate them appropriately since the FO esti-
mates at different bands may not match for inharmonic sounds, as can be seen in Fig. 39. To
overcome this, the inharmonicity factor is estimated and taken into account. Two different
inharmonicity models were implemented, the one given by (3.1) and another mentioned in
[F1e98, p.363]. In simulations, the performance difference between the two was negligible. The
model in (3.1) was adopted.

Global saliences L(n) are obtained by summing squared bandwise saliences L (n) that are
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Figure 40. Measured inharmonicity factors 3 for piano strings. The value 3=0.0004
given by Fletcher and Rossing [FIe98] for the middle register of the piano is indicated
with a dashed horizontal line.

selected from different bands according to a curve determined by (3.1). A search over possible
values of the inharmonicity factor 3(n) is conducted for each n, and the highest L(n) and the
corresponding B(n) are stored in the output. Squaring the bandwise FO saliences prior to sum-
ming was found to provide robustnessin very noisy cases where the pitch may be detectable at
alimited frequency range only. Weighting of different bands according to their estimated sig-
nal-to-noise ratios was not attempted.

The described method yields the inharmonicity factors 3 (see (3.1)) of the detected sounds as
a side-product. Figure 40 illustrates the measured inharmonicity factors (3 for the different
notes of an upright piano. The measured data agrees with that given by Fletcher and Rossing
for the piano in [Fle98, pp.363,390].

6.4 Coinciding frequency partials

The described predominant-FO estimator operates reliably even in cases where several concur-
rent harmonic sounds are present. However, the method is not able to estimate all the compo-
nent FOs simultaneously but the iterative estimation and cancellation procedure shown in
Fig. 35 hasto be applied.

The partials of a detected predominant-FO cannot be completely removed from the mixture
spectrum. Thiskind of “partial grouping” is not appropriate for coinciding partialsl. The spec-
tral componentsthat are due to several coinciding partials need to be shared between the corre-
sponding sounds. If the partials of a detected sound are completely removed, the coinciding
partials of other sounds are deleted in the subtraction procedure. After severa iterations, a
sound remaining in the residual spectrum may become too corrupted to be correctly analyzed
in the iterations that follow.

In addition to the above-described issue, coinciding partials of other sounds bring noise to the
FO salience calculations in (6.9). Although this problem is less severe, it sometimes causes
errors in the predominant-FO estimation.

The aim of this section is to introduce two different techniques to deal with coinciding partials.
The method proposed in [P3] is able to resolve coinciding partials to a certain degree and is

1. Inpractice, coinciding partials do not need to have exactly the same frequencies. The partials can be
considered to coincide if their frequency difference is smaller than the width of the mainlobe of the
spectrum of the time-domain analysis window.
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introduced in Sec. 6.4.2. Thismechanism is applied in the final system in Publication [P5]. The
method introduced in Sec. 6.4.3 has been originally proposed in [P1] and is oriented towards
avoiding the use of coinciding partials when a sound is being observed.

6.4.1 Diagnosisof the problem

When two sinusoidal partials with amplitudes a; and a, and phase difference 6, coincide in
frequency, the amplitude of the resulting sinusoid can be calculated as

ag = |a, +a,e'%|. (6.11)
If the two amplitudes are roughly equivalent, the partials may either amplify or cancel each

other, depending on their phases. However, if one of the amplitudes is significantly larger than
the other, asis usually the case, a; is close to the maximum of the two.

The condition that a harmonic partial h of a sound S coincides a harmonic j of another sound R
can be written as hFg = jFg, where Fgand Fy are the fundamental frequencies of the two
sounds. Hereideal harmonicity is assumed, which isvalid for many important classes of sound
sources and for the lower-order harmonics (h < 10) of all the instruments considered in this
work. When the common factors of integers h and j are reduced, we obtain

Fr = gFS, (6.12)
where (p, q) =1 are integer numbers. This implies that partials of two sounds can coincide

only if the fundamental frequencies of the two sounds are in rational number relationships.
Furthermore, when the fundamental frequencies of two sounds are in the above relationship,
then every pth harmonic pk of the sound S coincides every qth harmonic gk of the sound R,
wherek = 1,2, .... Thisisevident since hF g equals jF foreachpair h = pk and j = gk,
when (6.12) holds. If p = 1, the sound R overlaps all the partials of sound Sat their common
frequency bands.

An important principle governing Western music is paying attention to the pitch relations,
intervals, of simultaneously played notes. Simple harmonic relations satistying Eq. (6.12) are
favoured over dissonant ones. The smaller the values of p and g are, the closer is the harmonic
relation of the two sounds and the more perfectly they play together. For instance, fundamental
frequencies in relationships 4 : 5: 6 constitute a basic major chord and fundamental frequen-
cies in relationships (1/6) : (1/5) : (1/4) congtitute a basic minor chord. Because har-
monic relations are so common in music, these “worst cases’ must be handled well in general.
Also, this partly explains why multiple-FO estimation is particularly difficult in music.

Western music arranges notes to a quantized logarithmic scalel, where the fundamental fre-
quency of anotenis F,, = 440 x 2"/12Hz, and —48 < n < 39 in the standard piano keyboard,
for example. Although the scale is logarithmic, it can surprisingly well produce the different
harmonic FO relationships that can be derived by substituting small integers to (6.12) [K1a98].
Table 8 shows some basic musical intervals. As can be seen, the realizable FO relationships
deviate a little from their harmonic ideals, but the amount of error is so small that it is not
aurally disturbing to an average human listener. Moreover, for a feasible frequency anaysis
resolution, the coinciding of the partials appears as perfectz.

1. Thescaleisoften called twelve tone equal-tempered scale.
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Table 8: Some basic musical intervals.

. . Ideal FO Deviation from ideal
Interval name Size (semitones) . . . .
relationship relationship
octave 12 2:1 0.0%

perfect fifth 7 3:2 -0.11%
perfect fourth 5 4:3 +0.11%

major third 4 5:4 +0.79%

minor third 3 6:5 -0.91%
major second 2 9:8 —0.23%
minor second 1 16:15 —0.68%
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Figure 41. Preprocessed spectrum Z(k) containing two sounds with FOsin therelation 1:3
(reprinted from [P5]).

6.4.2 Resolving coinciding partials by the spectral smoothness principle

The amplitudes and phases of coinciding frequency partials can no more be deduced from their
sum. However, by making certain assumptions concerning the involved musical sounds, it is
possible to resolve the component partials to a certain degree. A method for this purpose has
been proposed in [P3] and is now introduced.

Consider the preprocessed spectrum of two concurrent harmonic sounds in Fig. 41. The FOs of
the two sounds are in 1: 3 relationships and, as a consequence, the partials of the higher-
pitched sound coincide with every third harmonic of the lower-pitched sound. As predicted by
(6.11), the coinciding partials randomly cancel or amplify each other at the low frequencies,
whereas at the higher frequencies the summary amplitudes approach the maximum of the two,
i.e., the spectral envelope of the higher sound.

In cases such as that in Fig. 41, the lower sound is usually detected first because it captures
much of the power of the higher-pitched sound, too. In general, sounds which are able to
“steal” much of the energy of the other sounds are often detected first. Removing the partials of
these sounds completely would effectively corrupt the other sounds.

2. The described principles generalize beyond Western music. Sethares has presented an extensive analy-
sisof how music utilizes FO relationships so as to cause partials of concurrent sounds coincide and to
make the sounds “blend” better [ Set98]. Also, he draws an interesting connection between the applied
musical instruments and the musical scalesin different cultures.
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Figure 42. The dots in the spectrum illustrate the spectral envelope of the lower-pitched
sound as estimated by (6.13). The example signal isthe same asin Fig. 41.

An agorithm for revealing the underlying magnitudes of coinciding partialsisfound by imitat-
ing the mechanisms of the human auditory system. As described in Sec. 3.5.3, the unitary pitch
model performs implicit spectral smoothing, especially for the unresolved harmonic partials.
Each two adjacent harmonic partials cause amplitude beating, i.e., alternatingly amplify and
cancel each other at the fundamental frequency rate. However, the magnitude of the beating is
determined by the smaller of the two amplitudes. When the amplitude envelope of a harmonic
sound is considered, this has the consequence that single higher-amplitude harmonic partials
arefiltered out.

The described smoothing mechanism can be isolated into a separate algorithm which amounts
to nonlinear filtering of the spectral envelope of a detected sound (i.e., the magnitudes of the
harmonic partials of the sound). In [P3], three different smoothing algorithms have been
described and evaluated. The simplest of these replaces the amplitude a,, of a harmonic partial
h with the minimum of the amplitudes of the harmonic h and its neighbour h + 1:

a, « min(ay, a;,, 1) - (6.13)
Interestingly, even this simple operation is rather efficient in estimating the spectra of harmonic
sounds in polyphonic musical signals. Considering Fig. 41 again, (6.13) would do a good job
in estimating the spectral envelope of the lower-pitched sound. Figure 42 illustrates the ampli-
tudes of the lower-pitched sound as estimated by (6.13) for this example. More sophisticated
and accurate algorithms exist, though, and these are described in [P3].

In physical terms, the described approach can be understood as relying on the assumption that
the spectral envelopes of musical sounds are smooth, i.e., relatively slowly-varying as a func-
tion of frequency. This assumption was discussed on page 55.

The estimated magnitudes are used in subtracting the detected sound from the mixture spec-
trum. Compared to the case where the partials are completely removed, this is much safer.
Also, the estimated magnitudes can be used in (6.9) to recalculate a refined salience of the FO
candidate in question and to subdue the noise caused by the coinciding partials of other sounds.
The spectral smoothness principle is used for both purposesin [P5].

6.4.3 ldentifying the harmonicsthat aretheleast likely to coincide

Another approach to deal with coinciding partials has been proposed in [P1]. The method is
based on identifying the harmonic partials that are the least likely to have been corrupted by
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the coinciding partials of other sounds. Those partials are then given more weight when mak-
ing observations concerning a hypothesized harmonic sound in a mixture signal.

The starting point of the method in [P1] is the assumption that if a harmonic sound Swith fun-
damental frequency Fg occurs in music, it is quite probable that other harmonic sounds R;
with fundamental frequencies Fp = (p/q)Fg (here integers (p, ) =1) occur simultane-
oudly. Thisis due to the princi ples'of Western music as discussed in Sec. 6.4.1. Moreover, it is
reasonable to assume that all values of p and q binding the fundamental frequencies F are
equally probable, except that small values are in general more probable than large values. Asa
consequence, the partials of an interfering sound R; are equally probable to overlap any subset
of every pi" partial of S. The set of every p partial of Sis here denoted by

E, ={pKk, k=12 ... (6.14)
Let us denote by 11, the probability that an interfering sound R; overlaps some subset Ep of
the sound S. The probability 11, is assumed to be the same for al the sets E, as mentioned
above. However, the likelihood that an individual harmonic partial does not coincide with the
partials of the other sounds is not equal to all different harmonics h. Instead, the likelihood is
proportional to the probability that none of the sets Ep that the partial h belongs to is over-
lapped. This can be calculated as (1 —115)P(, where D(h) is the number of subsets E , that
the harmonic h belongsto. It iseasy to prove that D(h) isthe number of integersthat divide h,
D(1) = 1. Aninteger aisdefined to divide another integer b, if and only if b = da for some
integer d. Here, perfect harmonicity is assumed.

The method in [P1] utilizes the above analysis in order to make reliable observations of a har-
monic sound in polyphonic musical signals. The most fundamental observation, of course, is
whether a hypothesized sound exists in the mixture signal or not. Thisis reduced to the ques-
tion whether the individual harmonics of a sound appear in the spectrum or not. However, there
are two types of outlier partials, i.e., harmonics that are not valid to represent a hypothesized
sound. Some harmonics may be due to the coinciding partials of other sounds only, whereas
some harmonics may be missing from the target sound even when it is present. In [P1], a
weighted order-statistical filter [Kuo94, Ast97] is proposed which is able to filter out the out-
lier values. Moreover, the sample selection probabilities of the filter are set according to the
relative trustworthiness of different harmonics. The hi" sample selection probability is the
probability that the sample h in a set is selected to the output of the filter [Kuo94].

A complete description of the method can be found in [P1]. The method has been extensively
used in atranscription system for piano music as described in [KIa98]. The method as such is
not applied in the multiple-FO estimation method in [P5]. However, a spectral smoothing algo-
rithm which utilizes the statistical dependencies of the subsets Ep achieves a slight improve-
ment in [P5].

6.5 Criticism

The multiple-FO estimation method described in this chapter has a certain major weakness.
That is, the iterative cancellation of the detected sounds is performed by separating the spectra
of the sounds in the frequency domain. Estimation and separation of the individua higher-
order harmonic partials cannot be done reliably. The smoothing mechanism partly saves the
day because it prevents from completely removing the higher-order partials and thus from
destroying the corresponding frequency range of the mixture spectrum.
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The successfulness of the frequency-domain separation depends critically on the resolution of
the spectrum. As a consequence, the described method requires arelatively long analysis frame
to perform well. The method proposed in Chapter 4 is advantageous in this respect because it
uses a different mechanism to estimate and cancel the higher-order (unresolved) partials. Asa

result, the method in Chapter 4 achieves a better accuracy, particularly in shorter time frames,
as can be seen in Table 6 on page 65.

The method presented here has some advantages compared to that in Chapter 4, aswell. These
were mentioned in the beginning of this chapter.
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7 Conclusions and future work

7.1 Conclusions

7.1.1 Multiple-FO estimation

Main part of this thesis deals with multiple-FO estimation which was considered to be the core
of the music transcription problem. Two different methods were proposed for this purpose. The
first was derived from the unitary pitch model in Chapter 4 and the other, as originally pub-
lished in [P5], is oriented towards more pragmatic problem-solving. The obtained results indi-
cate that multiple-FO estimation can be performed reasonably accurately at the level of asingle
time frame. For a variety of musical sounds, a priori knowledge of the sound sources is not
necessary, although this might further improve the performance.

The method described in [P5] represents a “complete” multiple-FO estimation system in the
sense that it includes mechanisms for suppressing additive noise and for estimating the number
of concurrent sounds in an input signal. Also, it provides an explicit reference implementation
of many basic mechanisms that are needed in multiple-FO estimation. However, the method
described in Chapter 4 is more accurate and, in particular, operates more reliably in short anal-
ysis frames. A comparative evaluation of the two methods was presented in Table 6 on page
65. The performance advantage of the method described in Chapter 4 is due to the principle
that higher-order (unresolved) harmonic partials are processed collectively; estimation and
separation of individual higher-order partials is not attempted. The author of this work was
quite surprised at the efficiency of the combined use of spectral-location and spectral-interval
information, basically directly according to the model for half-wave rectification in (4.27).

Both of the proposed multiple-FO estimation methods are based on an iterative estimation-and-
cancellation approach. The method described in [P5] separates the spectra of detected sounds
from the mixture, whereas the method described in Chapter 4 does not separate but, rather,
cancels the effect of detected sounds from the mixture signal. The very reason to resort to the
iterative approach was that we could not find any other technique that would have led to a com-
parable degree of accuracy. A particularly attractive property of the iterative approach is that at
least a couple of the most prominent FOs can be detected even in rich polyphonies. The proba-
bility of error increases rapidly in the course of iteration but, as described in [P5], this appears
to be at least partly due to the inherent characteristics of the problem itself: some soundsin a
mixture signal are more difficult to detect and remain in the residual till the last iterations. The
sounds which are aurally the most prominent are usually detected first.

It seems unlikely that the frame-level multiple-FO estimation accuracy could get substantially
better using bottom-up signal analysis techniques. The two methods converge close to the
same error rate (although the auditory-model based method is superior in short anaysis
frames) and the performance of both methods is comparable to that of human listeners, as
described in [P5]. However, substantial performance improvements can still be expected by
utilizing longer-term acoustic features and by constructing internal musicological models or
sound sources models. These will be discussed in Sec. 7.2 below.

7.1.2 Musical meter estimation
The proposed musical meter estimator is fairly successful in estimating the meter of different
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types of music signals. This conclusion was drawn by comparing the obtained results with
those of the two reference systems in Publication [P6] and, informally, by auralizing meter
estimatimation results as a generated drum track along with the original piece.

Asmentioned in Sec. 1.3, pitch information is not utilized in meter estimation. This basic deci-
sion contradicts with what we know about the human cognition of music but, neverthel ess, was
made for two main reasons. First, the proposed meter analysisis computationally very efficient
compared to the multiple-FO analysis. Secondly, the meter estimator benefits of a relatively
good time-resolution which cannot be adequately provided by the multiple-FO estimators. The
disadvantage of ignoring the pitch information is that meter analysis at the measure-pulse level
isnot very reliable. Since the measure-pulse correlates with harmonic changes, pitch informa-
tion would most probably improve the accuracy. Despite this criticism, the simulation results
indicate that the meter of alarge part of musical material can be analyzed without resorting to
multiple-FO analysis. The most important elements of a successful meter estimator turned out
to be measuring the degree of musical accentuation as a function of time and modeling primi-
tive musical knowledge which governs musically meaningful meter abstractions.

7.2 Futurework

7.2.1 Musicological models

The scope of this thesis was restricted to bottom-up signal analysis methods. As mentioned in
Sec. 1.2.2, however, the use of musicological information is amost equally important in the
automatic transcription of real-world musical material. Although the accuracy of the proposed
multiple-FO methods is comparable to that of trained humans in musical-chord identification
tasks, the accuracy of the methods is still inferior in the transcription of continuous musical
pieces. Thisis largely due to the fact that the proposed methods do not include any internal
“language model” for music but, instead, consider each individual analysis frame separately,
apart from its context. Temporal continuity of musical sounds or melodic phrases is not taken
into account at all. In brief, the program performs multiple-FO estimation but it does not under-
stand anything about music. Demonstrations of the transcription of continuous musical pieces
using the described musically-agnostic system are available at [KIa03b].

There are straightforward and efficient ways of representing musicological knowledge. As an
example, consider the following experiment. We represented combinations of co-occurring
notes as 12-bit numbers that we call chord unigrams. There are 4096 such unigrams. Each bit
signifies the presence/absence of one of the 12 pitch classes’. A total of 359 MIDI songs were
collected and cut into segments where note onsets and offsets do not occur. The harmonic con-
tent of each segment was then represented with the corresponding unigram. The probability of
occurrence for each unigram was computed within the pieces and averaged over all pieces. The
results were interesting: among the 30 most probable unigrams were the 12 single notes (pitch
classes), seven different major triad chords, five minor triads, and three minor-seventh chords.

The described kind of “brute force” statistical approach has several advantages. First, the esti-
mated prior probabilities of different FO combinations can be used to rate the likelihoods of
several competing FO hypotheses in a transcription system. Secondly, the described estimation

1. The pitch class“c”, for example, represents all ¢ notes in different octaves since these play the same
harmonic role. The principle that the notes c3 (130Hz), ¢4 (260Hz), c5 (520Hz) etc. are considered
equivalent is called octave equivalence. The twelve pitch classes are: ¢, c#, d, d#, e, f, f#, g, g#, a, a#, h.
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procedure involves no heuristic parameters or rules. Thirdly, no musical expertise was
employed, yet the system knows about major and minor triad chords, the building blocks of
Western harmony. New music types can be addressed simply by re-estimating the unigram
probabilities using different training material.

The described experiment with chord unigrams is merely an example of the probabilistic
approach to musicological modeling. Similar formulations can be proposed for the temporal
continuity of melodies and for harmonic progression, for example. Readily-collected statistics
have been published e.g. in [Kru90, pp. 67, 181, 195]. More complex rules governing Western
music can be found in music-theory workbooks. Temperley has proposed a very comprehen-
sive rule-based system which models the cognition of basic musical structures [TemO1]. He
used the system for the automatic musicological analysis of MIDI files. From the point of view
of music transcription, a remaining challenge is to transform these rule-based models into
probabilistic models which are able to evaluate the likelihoods of several candidate analyses
already during the transcription process.

7.2.2 Utilizing longer-term temporal featuresin multiple-FO estimation

In Sec. 5.2.1, several perceptual cues were listed which promote the grouping of time-fre-
guency components to a same sound source in human listeners. The cues, when present, facili-
tate the auditory organization (analysis) of sound mixtures. The proposed multiple-FO
estimators utilize two cues extensively: harmonic frequency relationships of partials and spec-
tral smoothness of their amplitude values. In contrast to this, a certain important feature was
not utilized at all: synchronous changes of time-frequency components. For example, the com-
ponents belonging to a same sound typically set on simultaneously, they may exhibit synchro-
nous frequency-modulation (vibrato) or amplitude-modulation, or the components may have a
“common fate”, such as synchronously ascending frequencies. All these cues are commonly
present in real-world music signals.

There is a straightforward way of utilizing the longer-term temporal features in multiple-FO
estimation. The proposed multiple-FO estimation methods perform the analysisin asingle time
frame. Moreover, the analysis frames can be relatively short (down to 46ms) in the case of the
auditory-model based method. Taking hanning-windowing into account, it is meaningful to
compute the FO-salience vectors A(t) every 23 milliseconds. Consider calculating the differ-
ence between two temporally successive FO-salience vectors, A(t+ (1) —A(0(1). In a quite
typical musical situation, several long-duration notes are playing in the background and, on top
of this static harmonic background, a sequence of shorter notes (a melody) is played. When a
new sound sets on, it appears as a peak in the differential FO-salience, whereas the long-dura-
tion notes do not pop up because they are present in both the past and the future frames. In
other words, the differential includes only the freshly onsetting sound and, from the point of
view of the differential FO-salience, the polyphony is virtually onein this case.

The above-described principle can be used to model al the “synchronous changes’ cues. A
clear peak in the differential FO-salience vector occurs exactly when all the partials of a certain
FO change synchronously. For example, when several sounds are playing and only one of the
sounds exhibits vibrato, the sound with vibrato comes up in the differential FO-salience. Thisis
because the peaks corresponding to the vibrato-sound in successive FO-salience vectors are in
different positions 1. In a practical implementation, instead of merely picking maxima in the
FO-salience vectors themselves, it might be reasonable to inspect the differential of FO-sali-
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ence, too, or, to pick peaksin the weighted sum of the two. From the point of view of psychoa-
coustics, we know that the auditory-nerve response is very strong at the onset of a sound but
then steadily falls to a lower “adaptation” level when the sound continues playing [Med86].
The use of differential FO-salience would not depart much from this basic principle and is able
to model the perceptual effect of the “synchronous changes’ cuesin auditory organization.

7.3 When will music transcription be a “ solved problem”?

An important fact about music transcription isthat it is difficult. The problem is at best compa-
rable to automatic speech recognition which has been studied for fifty years and is only now
becoming practically applicable. In music transcription, the development will probably be
faster as the computationa power is already available and we can borrow theoretical methods
and approaches from speech recognition. However, the problem is really not in finding fast
computers but in discovering the mechanisms and principles that humans use when listening to
music. Modelling perception is difficult because the world in which we live is complex,
because the things that humans create are complex (music being just one example), and
because the human brain is complex.

Anyone who claims to have a quick solution to the polyphonic transcription problem, or asin-
gle mechanism that solves the problem once and for all — is mistaken. The human brain com-
bines alarge number of processing principles and heuristics. We will be searching for them for
years, perhaps even decades, before arriving at, say, 95% of a skilled musician’s accuracy and
flexibility.

There is a certain factor which may crucially change the above prediction regarding the time
needed to release an accurate general-purpose’ music transcriber. This has to do with the gen-
erative nature of music versus speech. The development of speech recognition systems is con-
stantly confronted with the problem that the amount of targeted and carefully annotated
training data is limited. Synthetic speech is not valid for training a speech recognizer. In music
transcription, the very problem stems from combinatorics: the sounds of different instruments
occur in varying combinations and make up musical pieces. The dynamic variability and com-
plexity of a single sound event is not as high as that of speech sounds®. For these reasons, we
argue that synthetic music is valid for training a music transcriber. In principle, astronomical
amounts of training data can be generated since acoustic measurements for isolated musical
sounds are available, combinations of these can be generated by mixing, and effects can be
added. An exact reference annotation is immediately available.

The availability of training data helps us to automatize away the most frustrating part of algo-
rithm development: parameter optimization. However, it does not free us from designing the
methods themselves. It is quite unlikely that the transcription problem could be solved simply
by training a huge neura network, for example. The “space” of possible agorithms and mod-
els may be even larger than we can think of. The interesting part is to explore this spacein a
meaningful and efficient way until we have found the necessary ingredients of a successful
transcription system. People from different disciplines are needed in this pursuit, including sig-
nal processing, acoustics, computer science, music, linguistics, and experimental psychology.

1. The concept music is not well-defined: in principle anything can be called music. The scope of a*“gen-
eral-purpose’ transcriber is here limited to signal types that are commonly regarded as music.
2. Evenfor singing, transcribing the melody is significantly easier than recognizing the lyrics.
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Appendices

Author’s contribution to the publications
Publications [P1]{P3] and [P5] were done by the author alone.

The algorithm in [P4] was derived and implemented by the author. In the beginning of the
work, Prof. Astola helped in finding a good way of modelling half-wave rectification in the
unitary model by pointing out the treatment of nonlinear analog devicesin [Dav87].

The meter estimation method in [P6] was designed and implemented by the author. M.Sc.
Antti Eronen contributed significantly to the mathematical formulation and description of the
probabilistic model. Also Prof. Astola helped in the final formulation of the model.

Errata

In addition to some misprints, the following errors have been found in the publications.

Publication [P3]

In[P3], inthe end of Sec. 2 there is a statement:
“The predominant pitch estimation algorithm is capable of finding one of the correct
pitches with 99% certainty even in six-voice polyphonies.”

This should be
“...with more than 90% certainty even in six-voice polyphonies’.

In the erroneous statement, the error rate was calculated as

<number of errors>/ (<number of test cases> ¢ <polyphony>).
However, when calculating predominant-pitch estimation error rates this should have been
simply

<number of errors>/ <number of test cases>.
The error is very annoying but does not change the conclusions of the paper in any way. The
error rates in the evaluation section (in Table 1) are correct.

Publication [P4]

Equation (4) should be
1 1
W._ (k) = V.(k) +=X.(k),
oK) = Vel + 5%
not
V(K)
W (k) = Lfox + X (K).

This does not change the forthcoming considerations where V (k) and X (k) are each dis-
cussed separately. The notation o, refers to the standard deviation of the signal at
subband c. Thisis misleading. A better notation would have been o, of course.
Equation (5) should be
K/2-0
Ve(®) = 3 H(KX(KH(k-8)XAk-8)]
k=-K/2+95
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not
K/2-8
V(@) = 5 [H(K)X(K)H(k + &) XKk + 3)]
k=-K/2+5%
This does not change the forthcoming considerations since, as described in Sec. 2.5 of [P4],
the squared magnitudes of V (8) are used. The erroneous formula gives V (—0) which is
the complex conjugate of V(d).
Below Eq. (8) should be B, = (4.37/1000)(f/K), not B, = 4.37/1000.
Equation (13): Here, the distortion spectrum centered on 2f . has been dropped. This
should have been explicitly stated (dropping the distortion spectrum was mentioned earlier
in the paper) and we should have denoted V.'(3) instead of V (d). The notation V' (d) is
used in this thesis when referring to the spectrum V (8) where the distortion spectrum has
been dropped and only the spectrum centered on zero frequency is retained.

blication [P5]

Under equation (9) should be
M ={01,..,n-1

not

M ={01,.. k=1 .

Table | (pseudocode of the core algorithm): The seventh row of the algorithm should be
8 « lp[,/1+0.01[(I,/n)2-1] -1]

not

5« %wﬁ 0.01[(l,/n)2-1] -1] .

That is, & should be expressed in frequency-bin units, not in Hertz units.

Table | (pseudocode of the core agorithm): The second-last row of the algorithm should be
if ky>ky+Ky,—=1thenk; « k,+K -1,

not
if k; >k, + K, then k; « ky+ K.

In the end of Equations (13) and (14), N(pow)(1) should read Npow (1) .
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NUMBER THEORETICAL MEANS OF RESOLVING A
MIXTURE OF SEVERAL HARMONIC SOUNDS

Anss Klapuri
Signal Processing Laboratoffampere University ofdchnology
P.O.Box 553, FIN-33101ampere, FINLAND
Tel: +358 3 3652124; fax: +358 3 3653857
e-mail: klap@s.tut.fi

ABSTRACT on its harmonic partials, no matter if it is made in time or in
In this papera number theoretical method is developed for frequency domain.

o e, Tho rmethod s based an the. propertics of 3 BASIC PROBLEM IN RESOLVING A MIXTURE
' Prop OF HARMONIC SOUNDS

prime numbers and on non-linear filtering. It is shown that a )
number theoretical approach is of vital importance in order 1heré are several good methods for measuring the fre-
to detect and observe harmonic sounds in musical polypho- duéncy and amplitude contours and phases of the sinusoid

nies. The method is verified by applying it to the automatic Partials in a signal [3,4,5]. Separatingixture of harmonic
transcription of piano music. sounds is problematic for two specific reasons.

1. It is most dificult to omganize sinusoid partials to their
1 INTRODUCTION

Multiple fundamental frequency tracking is an almost unex-

plored area of research, although in the moniphonic case
several algorithms have been proposed that are robust, com-2. The amplitude envelopes and phases of two sinusoids can
mercially applicable and operate in real time. Some pub-

lished eforts towards multipitch tracking have been made in
the field of automatic transcription of music [1,2]. Until
these days, howevethe performance of the transcription
systems has been very limited in polyphonic signals.

We will discuss the spectral properties of a mixture of

due fundamental frequencies, because most often the har-

monic series of diérent sounds extend to common fre-
quency bands.

no more be deduced from their sum, if ttoegrlap, i.e.
share the same frequency

Proposition 1. If any harmonichjS of a soundS is over-
lapped by any harmonilt;,R of an interfering soun&, then
the fundamental frequencyf the soundR must be

harmonic sounds and demonstrate why single pitch tracking fo, = %]Efos, wherem andn are positive integer numbers.

algorithms are not appropriate as such for use in polyphonic

Proof. The condition of a harmonihjS of a soundSto

signals. Then we attempt to establish a number theoretical pe overlapped by a harmonhf of an interfering soun&

method to detect and observe harmonic sounds in poly-

phonic signals. This does not only concern multiple funda-

mental frequency tracking, but observing any of the features

of harmonic sounds in polyphonic signals.
2 FEATURE OF A SOUND

A harmonic sound consists of a series of frequency partials,

can be expressed as

i 00, = j 0. 1)
When the common factors pandi are reduced, this can be
expressed as

m
OR = ﬁ DOS' (2)

harmonics They appear as peaks in the frequency spectrum where (m,n) >1 and can be calculated from the integers

at constant frequency intervdl® with the lowest partial at
frequencyfO, which is therefore called the fundamental fre-
guency of the sound.
We denote harmonic sounds with uppercase |e&tard
R. These are used consistently in such roles that s8isd
being observed in the interference (presence) of a seund
or Ry, if there are several interfering sounds @énote the
harmonic partials of a sound by, wherej=1. Braces are
used to denoteets, thus f} being a set of harmonics.
Further we denote bg(x) afeature of x, wherex can be a
sounds or its single harmonic partil. We will separate

andj. O

Proposition 2. If the fundamental frequencies of two har-
monic soundsS and R are fOg and fo; = %DOS, respec-
tively, then every1th harmonich,, of the soun® overlaps
everymth harmonich_, of the sound where integek>1.

Proof. Substituting (2) to (1) we can rewrite the condi-
tion of a harmonidy, of a soundsto be overlapped by a har-
monich; of an interfering soun® as

(i (05 = (109 - Hd?[fofj[fosgm (itm=jh),

the diferent features by subscript characters, for example which is true for each pair i=nk and j=mk, whére1. [

Or(¥), 9. (x) andgy(x) refefing to the frequengyoudness,
and onset time ok, respectively Because the very sub-

It is easy to see thatifi=1 in equation 2R overlaps all
the harmonics o8 at their common frequency bands. In this

stance of a harmonic sound is its series of equidistant sinu- case, detecting and observiigs difficult and even theoret-
soid partials, any observation of a harmonic sound must rely ically ambiguous. This case will be separately discussed.



4 CERTAIN PRINCIPLESIN WESTERN MUSIC
An important principle governing music is paying attention

to the frequency relations, intervals, of simultaneously

played notes. o notes are in a harmonielation to each
other if their fundamental frequencies satisfy

fo, = S0, 3)
wherem andn are small integers. The smaller the values of
m andn are the closer is the harmonic relation of the two
sounds and the more perfectly they play together

Western music arranges notes to a quantized logarithmic

scale, where the fundamental frequency of a rots
fO, = 440 P12 Hz, and-48<k<39 in a standard piano

keyboard, for example. Although the scale is logarithmic, it

can surprisingly well produce the fdifent harmonic inter-
vals that can be derived from Equat{@) by substituting
small integers tan andn. The realizable musical intervals

ics of Sbeing overlapped by any harmonkgsof R can be
expressed as
Eil 0 = p, L0
0,d0g = p, F0g "
wherep, can be solved as
_ POy
p, = —

—
In order fOthz to be a prime number and not equab{q i
must satisfy

(4)

il =n Epl! (5)
wherenis an integer and implies
i, = nlb,.
Substituting (5) to (4) we get
Py [f0g 1 E{UN B fOg
fOg = i = n P, =T (6)

deviate a little from their ideals, but the amount of error is so wheren>1. 0

little that it practically does not disturb the human baore-

If Equation 6 holds, all the harmonics of are over-

over, for a feasible frequency analysis resolution, the over- |apped by every™ harmonic ofR, based on propositich

lapping of the harmonics of the two sounds is the same as if

the harmonic relation were perfect.

6 DEALING WITH OUTLIER VALUES

For instance, the fundamental frequencies of the notes in Let us denote the set of prime harmonics Iy [ p is

a basicmajor chord are in 45: 6 relations to each other

prime}, and the set of the features of the prime harmonics by

Based on the proposition 2, 47%, 33% and 60% of the har- {g(hy) | p is prime}, where the type of the feature is not yet
monic partials of the notes are overlapped by the other two fixed. Based on proposition 3, prime number harmonics of a
notes in the chord. In this case, 60% of the partials of the soundS can be considered as independent pieces of evi-

third note would be found from the signal even in its

dence for the existence of the so#ar for any of its fea-

absence. This demonstrates why the algorithms that havetures that can be deduced from its harmonics.

been designed for the detection and observation of a single

In the set of representative featureghf,) | p is prime}

harmonic sound cannot be straightforwardly applied to there are two kinds obutliers, i.e., irrelevant values in
resolving polyhonic musical contents. Instead, we need to respect of the true featugfS) of the sound. Some prime

rethink the very kernel, how to collect the information of a
sound from its harmonics.

5 PRIME NUMBER HARMONICS
Prime number harmonics{, h,, hs, hg, ho,...} of a sound

harmonics have been disturbed by interfering sounds, while
others may be totally lacking fro® Those values that are
not outliers vary somewhat in value, but outliers are single,
clearly deviated values, and invalid to represent the true fea-
ture of S However a majority of the representativelsould

share a desired common property that is derived from the pe reliable, it being unprobable that a majority of the prime

very definition of the prime numbers: they are divisible only

number harmonics would be either missing or each cor-

by one and themselves. This has an important consequencerpted by an independent interfering sound.

which will give a steadfast starting point inganizing fre-
guency partials to their due fundamental frequencies.

Proposition 3. Any harmonic soun® can overlap only one
prime number harmonic of a souSdprovided that the fun-
damental frequency & is notfo, = r—l]D‘OS, where integer
n>1. If R overlaps two prime number harmonics $fit
overlaps all the harmonics & and its fundamental fre-
guency is in the mentioned relationSo

Proof. This can be proved by assuming that two prime
number harmonics @& are overlapped by the harmonics of
R and showing that in this caseg = %DS, wherenx>1,
and the soun® overlaps all the harmonics of the souhd

Let fOg and fOg be the fundamental frequencies of the
soundsS andR, respectivelyWe denote an arbitrary prime
number byp;. The condition of two prime number harmon-

This is the motivation for the design of a filter which
would pick the estimated featuggS) from the set of inde-
pendent representativeg(fi,) | p is prime} and drop out the
irrelevant values. The class of median and order statistic fil-
ters is prompted by the fact that they are particulafcef
tive in dealing with the kind of data that was characterized
above. These filters depend smting the set of representa-
tives. Under or overestimated outlier values map to the both
ends of the sorted set, and in between, the reliable samples
are sorted from the smallest up to theést value. Thus a
trivial way to estimate a feature of a sound would be

8(9) =median{g(hy) | pis prime}. (7
Weighted order statistic (WOS) filters are defined in [7].
They allow convenient tailoring of the filtsrsample selec-
tion probabilities. The’;th sample selection probability is the
probability that the sample, in a set {y} is selected to be
the output of the filter [8]. & denote the sample selection



probabilities of a filter byPy(j).

7 GENERALIZATION OF THE RESULT

A still remaining shortcoming of the proposed procedure is
that it utilizes only the prime number harmonics. This

degrades the usability of the algorithm and makes it sensi-

tive to the tonal content of a sounde\froceed towards a

model where this defect is removed but the advantages of {E

the set of prime number harmonics are preserved.

We denote by a WOS filter that picks the estimated fea-
ture of a sound from the set of features of its harmonics.
This can be written as

9(9 =v{g(h)} . (8)
Further we denote by _ = {hy} . i=1, aset which con-
tains everym™ harmonic of a sound, starting from harmonic
m. In Propositior2 we proved that if an interfering souRd
overlaps a harmonic of an observing sound, it overlaps
everym™ harmonic of it, i.e., exactly the subsgt.

The requirements of the filter can now be exactly
expressed as follows. Given a numberof interfering
sounds, they should together contribute only up to a limited
probability A that a corrupted harmonic is chosen to the out-
put ofv. At the same time, the filter should utilize all the har-
monics of the observed sound as equally as possible to mak
it applicable and robust to t&fent kinds of sounds.

These requirements can be achieved by finding sample

selection probabilitie®(j) for the filterv so that the selec-
tion probabilities of theN largest subsetg,,, together sum
up to the given limit probabilitk. N largest sets that are not
subsets of each other are the prime sEtg|{n=2,3,5,7...}.
E, is excluded since the case of all harmonics being over-
lapped will be discussed separatéfyN is set to 1 this can
be expressed as findiRy(j) in a minimizing problem

E max

Om=2 ®)
whereJ denotes the total number of detectable harmonics of
the observed sound.

We assume all fundamental frequencies of interfering
soundsR; to be equally probable. Based on the assumption,
all m andn values bindingfOg in equation 2 are equally
probable, from where it follows th&is equally probable to
choose to overlap any subdggt, However the relative
trustworthiness is not the same for all the single harmonics
h;, but equals the probability that none of the &gtshath;
belongs to is overlapped. This is calculated™8, wheret
represents the overall probability of an interfering sound to
overlap some subsé&,, andD(j) is the number of subsets
Em that harmonidy belongs to. It can be easily proved that
D(j) is the number of integers that divig®(1)=1. An inte-
ger a is defined tadivide another integeb, if and only if
b = da holds for some integet[9].

Selection probabilitie®(j) of the harmonics should be
according to their probability of being trustwortiWe can
therefore writePy(j) in the form

P) =7,
wherej =1, andD(j) is as defined above.

i H ‘ P_( [j)%%
min m ,
q; s o0

(10)

€,

We can now rewrite the requirements of the feature
exraction filterv as

ETD(D = Di .[D(j) ’
il i=1
where set is defllned to contain the numbgrsf the har-
monics h; that belong to some of thd largest subsets
m|M=2,3,5,7...}. IfN=1, setl simply contains even num-
bers up tal. Thus the left side sums the selection probabili-
ties of the harmonics in thé largest subsets. The right side
summation goes over the selection probabilities of all the
harmonics and should equal unity

From equation 1, T can be solved. If the problem is solv-
able for giverN, A andJ, there is only one root that is real
and between 0 and 1. This root is the earlier discussed value
of 1. Selection probabilitieB(j) can then be calculated by
substitutingt to Equation 10, and scaling the overall sum of
P<(j) to unity.

We arrive at selection probabiliti€%(j), whereN inter-
fering sounds may together contribute only up pyobabil-
ity that an overlapped harmonic exists in the output.
Another very important property of this algorithm is that we
can flexibly make a traddohetween the two requirements
of the filter: the less we put emphasis on the robustness of

(11)

the filterv in the presence of interfering sounds, the more
equally the filter utilizes all the harmonics of the observed
sound, and vice versa. Figure 1 illustrates the selection prob-
abilities forN=2,A=0.45 and)=20.

0.12
0.10f
0.08¢
0.06}
0.041
0.021
0.00

Figure 1. P(j) for 20 harmonics, whelN=2 andA=0.45.

Thus we reduced the observation of a featy8 of a har-
monic soundsin the presence of other interfering harmonic
soundsR; to measuring the featuregh;) of the harmonics
of the sounds and applying a weighted order statistic fikter
to yield an estimate fog(S). A design procedure to find a
WOS filter whichimplements the calculated selection prob-
abilites is presented in [10].

8 FEATURE SUBTRACTION PRINCIPLE

Our algorithm and discussion on the observation of the fea-
tures of a harmonic sound in the presence of other harmonic
sounds was based on an assumption that the observed sound
Sis nottotally overlapped by an interfering souRgdwhose
fundamental frequency 9, % (F0g.

The basic idea of our solution to this problem isdor
pensate the efect of the interfering soun®, the properties
of which can be robustly extracted in the presen&using
the procedure presented before, because the interfering
sound is not totally overlapped By Thus it will be enough
to develop an algorithm to subtract, remove, or compensate,
the revealed properties of the lower sound and then proceed



to determine the properties of the so@dnhich is laid bare loudness as a threshold to segregate between true and false
from under the interfering sound. The subtraction process notes. Waker candidates were discarded as false notes.
depends on the feature under inspection, and cannot be preResults are presented ialdle 2. The last piece was played
sented in a general form. by a computer on an electric piano. Thieef of all notes

9 ALGORITHM EVALUATION having roughly equal playing loudness and the absence of

) - o cross resonance and noise can be noticed in the results.
Our algorithm was evaluated and verified by applying it in a

computer program whose purpose is to transcribe poly- Table 2: Transcription results using 25% loudness limit.

phonic piano music. The program is first allowed to study . Notes| Typical |MissingErroneous
i o Composition |. Y 9

piano notes one by one, afitient amount to represent all in total| polyphony| notes |extra notes

the diferent tone colours that can be produced by that ==ForEnse. 1 36 T - 3

instrument. After this we require the program to transcribe Fir Elise : il 190 |half-2 half4 9 6

rich polyphonic musical signals played with the same instru- Inventio’8 205 2 15 4

ment, i.e., to determine the fundamental frequencies and the Roqo alla Trea 142 | 3 (Up to 5) 1 -

loudnesses of the sounds in the signals.
In all test cases, the transcription was done without Flndlng the exact fundamental frequencies of the sounds in
knowledge of the polyphony of the transcribed signals, and the analyzed signals proved successful in all cases. They
with a fixed constant set of parameters. The range of funda- Were not assumed to be quantized to the closest legal notes.
mental frequencie_s was restricted to exte_nd frorh-lﬁ?oq 10 CONCLUSION
2100Hz, where five octaves and 61 piano keys fit in
between. An acoustic upright piano was used in simulations.
Transcription proceeds by first detecting all potential note
candidates in the spectrum, and then resolving their loud-
nesses one by one, using the new method. Natuthdye
are much more potential note candidates than truly played
notes. V& calltrue notes the notes that were truly played in
the recorded signals, ardlse notes those that appear as
note candidates, although they were not actually played.
The goodness of the algorithm is justified by its ability to
indicate the truly existing sound in the signal, i.e. the loud-
ness of the true notes should raise clearly above the loudnesREFERENCES

of the false ones. The loudnesses of the candidates in eact[1] Kashino, Nakadai, Kinoshita,ahaka. “Application of

The problem of resolving rich musical polyphonies was the
motivation for developing the new methods. Simulations
illustrate that the current system works within certain error
limits up to seven notes polyphonkspecially although
increase in polyphony brings the levels of the weakest true
note and the strongest false note closer to each, dtieer
system does not totally break down even in rich polypho-
nies. W\ conclude that a number theoretical analysis of a
sound mixture is the key to a robust detection and observion
of harmonic sounds in the interference of each other

time segment are scaled between the values 0 to 100. Bayesian probability network to music scene analysis”.
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musical polyphonies. Results are presentedbierll. In the [2] Martin. “A Blackboard System for Automatiadnscrip-

first type of tests, consonant and dissonant chords were  tion of Simple Polyphonic Music”. MIT Media Labora-
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where the loudness of the false notes gets closest to the true  tive Sound Synthesis Using Hidden Markov Models”.

notes, was recorded. The polyphpmyumber of notes in |EEE Trans. on ASSP, 1993.
each test, is also indicated. [5] Serra. “Musical Sound Modeling ¥ Sinusoids Plus
Table 1: Relative loudnesses of the true and false notes. Noise”. Roads, Pope, Poli (eds.). “Musical Signal
Processing”. Swets & Zeitlinger Publishers, 1997.
Test tvoePol _ Averages _ Worst case [6] Astola, Kuosmanen. “Fundamentals of Nonlinear Digital
yp yp
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ABSTRACT apply to a wide variety of input signals. This allows processing

. N hem without a priori knowledge of signal contents or separate
A system was designed, which is able to detect the perceptu uning of parameters,

onsets of sounds in acoustic signals. The system is general in
regard to the sounds involved and was found to be robust for dif-The realized system was validated by applying it to the detection
ferent kinds of signals. This was achieved without assuming regu-of onsets in musical signals. This was done mainly for two rea-
larities in the positions of the onsets. In this papemethod is sons. First, musical signals introduce a rich variety of sounds with
first proposed that can determine the beginnings of sounds tha@ wide range of pitches, timbres and loudnesseterBift combi-
exhibit onset imperfections, i.e., the amplitude envelope of which nations of onsetting and backgrounding sounds are readily availa-
does not rise monotonicallyThen the mentioned system is ble. Second, verifying the contents of a musical signal is
described, which utilizes band-wise processing and a psychoasomewhat easier than in the case of environmental sounds. Also
coustic model of intensity coding to combine the results from the the conceptof a perceivable onset is better defined. It should be
separate frequency bands. The performance of the system waoted, howeverthat the algorithm is not limited to musical sig-
validated by applying it to the detection of onsets in musical sig- nals, because the regularities and rhythmic properties of musical
nals that ranged from rock to classical and big band recordings. signals are not utilized in the detection process. The system per-
forms reliably for input signals that ranged from rock music to
classical and big band recordings, both with and without drums.

1. INTRODUCTION

2. SYSTEM OVERVIEW
ggi?;t?:r:egﬁ:gna%IZIyssiznoI;n :coc:fjirt]itcr?slie r|1r;|tshe|::0?;g?|tat;22iilt;igme earliest onset detection systems typically tried to process the
t-and ¢ ryti ns and editin 9 f .di gr )r/din Th amplitude envelope of a signal as a whole (see e.g. [7]). Since this
cut-and-paste operations and € g of audlo recordings. 1N&, ¢ ot very déctive, later proposals have evolved towards

onset information may also be used in audio/video synchroniza- . . . . .
tion and timing, or passed for further analysis and recognition forband-W|se processing. Scheirer was the first to clearly point out
9. orp y 9 the fact that an onset detection algorithm should follow the

example in an acoustic supervision system. human auditory system by treating frequency bands separately
We use the ternonset detection to refer to the detection of the and then combining results in the end [4]. An earlier system of
beginnings of discrete events in acoustic signals. A percept of arBilmes’s was on the way to the same direction, but his system
onset is caused by a noticeable change in the intepditih or only used a high-frequency and a low-frequency band, which was
timbre of the sound [1]. A fundamental problem in the design of not that efective[2].

an onset detection system is distinguishing genuine onsets fronécheirer describes a psychoacoustic demonstration on beat per-

gradual changes aqd _rnodulat|ons that take place during the rin ception, which shows that certain kinds of signal simplifications
ing of a sound. This is also the reason why robust one-by-one

. A can be performed withoutfatting the perceived rhythmic con-
detection of onsets has proved to be very hard to attain wnthouttent of 5 musical signal [4] Wr?en thz signal is d)i/vided into at
significantly limiting the set of application signals. :

least four frequency bands and the corresponding bands of a noise
A lot of research related to onset detection has been carried out isignal are controlled by the amplitude envelopes of the musical
recent years. Howeveonly few systems have set out to solve the signal, the noise signal will have a rhythmic percept which is sig-
problem of one-by-one onset detection [1][2][3]. Instead, most nificantly the same as that of the original signal. On the other
systems aim at highdevel information, such as the perceived hand, this does not hold if only one band is used, in which case
beat of a musical signal [4][5][6], in which case long-term auto- the original signal is no more recognizable from its simplified
correlations and regularities can be used to remove single errororm.

and to tune the sensitivity of the low-level detection process. The overview of our onset detection system is presented in

In this paperwe first propose a mathematical method to cope Figurel. It utilizes the band-wise processing principle as moti-
with sounds that exhibit onset imperfections, i.e., the amplitude vated above. First, the overall loudness of the signal is normalized
envelope of which rises through a complex track and easily pro-to 70dB level using the model of loudness as proposed by Moore
duces erroneous extra onsets or an incorrect time value. Then wet al. [8]. Then a filterbank divides the signal into 21 non-overlap-
propose the application of psychoacoustic models of intensityping bands. At each band, we detaadet components and deter-
coding, which enable us to determine system parameters thamine their time and intensitin final phase, the onset components
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eral local maxima in the first order fdifence function near the
physical onset (see plots with a dashed line in Figure 2).

are combined to yield onsets. We took an approach thaffedtively handles both of these prob-
lems. W begin by calculating a first orderfeifence function

Figure 1b. Processing at each frequency band.

Since we use psychoacoustic models both in onset componerJ
detection, in its time and intensity determination, and in combin- D(t) = d (A(D) ,

ing the results, it is important to use a filterbank which can pro- dt . .

vide input to the models. Therefore, we choose a bank of nearl))NhereA(t) denptes the amplltude_ gnvelope fl.mCtB.(t) Is set to
critical-band filters which covers the frequencies fromH#4to Zero Where_ signal is below minimum audible flel.d' Then we
18kHz. The lowest three among the required 21 filters are one-d'vIde the.flrst order dﬁé.rence funct!on b.y the amplltqde enve-
octave band-pass filters. The remaining eighteen are third-octav«lsOloe function to get a first ordeelative difference function W

band-pass filters. All subsequent calculations can be done on&® the amount _of_change in re!ation to the sign_al level. This is the
band at a time. This reduces the memory requirements of theame as diérentiating the logarithm of the amplitude envelope.

algorithm in the case of long input signals, assumed that parallel W (t) = aqt(log (A(t)))

processing is not desired. We use the relative dérence function\(t) both to detect onset

The output of each filter is full-wave rectified and then decimated components and to determine their time. This is psychoacousti-
by factor 180 to ease the following computations. Amplitude cally relevant, since perceived increase in signal amplitude is in
envelopes are calculated by convolving the band-limited signalsrelation to its level, the same amount of increase being more
with a 100ms half-Hanning (raised cosine) windohis window prominent in a quiet signal. According to Moore, the smallest
performs much the same eggintegration as the human auditory detectable change in intensity is approximately proportional to the
system, preserving sudden changes, but masking rapid modulaintensity of the signdtl0]. That is,Al / I, the Weber fraction, is a

tion [9][4]. constant. This relationship holds for intensities from abowB®0
to about 10@B above the absolute threshold. The function
3. CALCULATION OF ONSET COMPONENTS Al (t)/1(t) is equivalent toW(t), since the frequency in
3.1 Onset Component Detection I (t) = A(t) O is reduced in the division. Thus we detect onset

components by a simple peak picking operation, which looks for

Several algorithms for picking potential onset candidates from anpeaks above a global threshdlg in the relative dference func-
amplitude envelope function have been presented in the literaturgjon \(t).

[5][6][2][4]. Despite the number of variants, practically all of
them are based on the calculation of a first ordéerdifice func-
tion of the signal amplitude envelopes and taking the maximum
rising slope as an onset or an onset component.

The relative difierence function ééctively solves the abovemen-
tioned problems by detecting the onset times of low sounds ear-
lier and, more importanthpy handling complicated onset tracks,
since oscillations in the onset track of a sound do not matter in
In our simulations, it turned out that the first ordeffedénce  ye|ative terms after its amplitude has started risiogcl@rify this,
function reflects well the loudness of an onsetting sound, but itsye plotted the absolute and relativefefiénce functions of the

maximum values fail to precisely mark the time of an onset. This onset of a piano sound in Figure 2. Both of the benefits discussed
is due to two reasons. First, especially low sounds may take Som@an pe seen clearly

time to come to the point where their amplitude is maximally ris- .

ing, and thus that point is crucially late from the physical onset of 3-2 I ntensity of an Onset Component

a sound and leads to an incorrect cross-band association with thgimultaneously occurring sounds combine by a linear summation.
higher frequencies. Second, the onset track of a sound is mosgh determining the intensity of an already detected onset compo-
often not monotonically increasing, and thus we would have sev-nent, we can assume the level of backgrounding sounds to be



momentarily steady and take the increase in level to be due to thdoudness (dB)
onsetting sound(s). Thus the asked intensity can be picked fron.

the first order dference functiorD(t), multiplied by the band 49
center frequencyg. The intensity is needed later when onset 40-
components are combined to yield onsets of the overall signal.  35-

An appropriate point in time to pick the intensity fr@rt) is not 30
as early as where the onset was determined to.dostead, we 25r 111
scan forward up to the point where amplitude envelope starts 5 ‘i ‘
decreasing and determine the intensity at the point of maximum

slope, i.e., at the maximum value Bft) between the onset and
the point where amplitude stops increasing.
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Figure 3. The loudness of onsets as a function of their tim
After intensities has been determined for all onset components at The genuine onsets can now be quite easily discerned.
the band, we check them through and drop out components that

are closer than 5@s to a more intense component. Remaining 5. VALIDATION EXPERIMENTS

ones are accepted. The presented procedure was verified by testing its performance

4. COMBINING THE RESULTS FROM THE BANDS in detecti_ng onsets in _ml_JsicaI signr_:lls. '_rhe signals were sel_ected
to comprise a lge variation of musical instruments and a wide

In the final phase we combine onset components from separatdynamic and pitch range. Signals both with and without drums

bands to yield onsets of the overall signal. For this purpose, wewere included. Another goal was to include representative

implemented the model of loudness as proposed by Moore, Glasexcerpts from dferent musical genres, ranging from jazz and

beg and Baer [8]. Input to our implementation is a vector of rock to classical and big band music.

sound intensities at third-octave bands betweerHzl4and

: Approximately ten second excerpts were sampled from each per-
18kHz, from which the program calculates the loudness of the PP y P P P

formance. These periods were carefully inspected and their onset

S|gnald|n phons.lqr(])t[l)tlm_lze It_?edcg]mputeglolnslfejel?_cy (t)t: theh times were marked. The excerpts were then feeded to the onset
procedure, we shightly simplified the model by making the Shapeé a0 qigy system and its results were compared to the manual

of the excitation pattern, i.e., the intensity spread between aOIJa'transcription. All simulation cases were computed using the very

cent critical bands mdept_endent from sounql pressure Ieve_l. ThISsame set of parameter values and thresholds, without separate tai-
accelerated the computations remarkablit did not make a sig-

ificant dif to th timated loud | for th Joring for each simulation case. The algorithm itself was as
nificant diterence fo the estimated foudness vajues for the soun explained above. Highdevel rhythmic properties and regulari-
intensity levels we are using.

ties of musical signals were not utilized in the detection.
The onsets of the overall signal are calculated as follows. First th
onset components from ftéfent bands are all sorted in time
order and are regarded as sound onset candidates heréhésr
each onset candidate is assigned a loudness value, which is calc

Stis interesting to note that the limitations of our detection system
resemble those of human perceptior défine gpseudo-onseab

be a sound beginning, which undisputably exists in a signal, but
: . . . Yannot be detected by a human listener if the signal is not pre-
lated by collecting onset components in antime window sented in short segments and several times. Since objective listen-

arour:jq thfe cand|dat§ ar(;d fﬁgmlg tr&elr |ntensd|t|(Ies ft;)/lthe cotrrel-ing test could not be arranged, we regard undetected pseudo-onset
sponding frequency bands of e loudness model of Vioore et al,, o errors, too. It turned out that the detection of some pseudo-

Since most candidates have only a couple of contributing OnSEtOnsets could not be achieved without giving rise to several erro-

(t:)omkponen;s at_dérlent lb?nd;; wetk:nus:) usde ".“”;ﬂ““r.“ Ie\t/el} ?kr] neous extra onsets that are due to gradual changes and modula-
ackground noise level for the other bands in the input o egons during the ringing of sounds.

model. Repeating this procedure to each onset candidate yields
vector of candidate loudnesses as a function of their times, a$nset detection results for tenfdient musical signals are sum-
illustrated in Figures for a popular music signal. marized in &ble 1. The total number of onsets, number of unde-

Onset loudnesses that were estimated using the abovementinet cted onsets and the number of erroneous extra onsets are given.
9 measure of correctness in the rightmost column is calculated as

procedure corresponded very well to the perceived loudnesses of
the onsets in verificative listening tests. It turned out that a robust  correct = total —undetected —extra (100 %.
detection of onsets in very diverse kinds of signals can now be . . _total

: ; S . . A more detailed discussion of each case follows.
achieved by a simple peak picking operation, which looks for
onset candidates above a global threshold vajyg. We drop Chopiris classical piano etude (op. 25, no. 4) was a trivial case.
out onset candidates whose loudness falls below the thresholdStill three onsets fell below threshold because the notes were low
Then we also drop out candidates that are too closmgd@ a pitched, played softly and masked by other nod®i Meolds
louder candidate. Among equally loud but too close candidates,Orient Blue’ represents a much morefidifilt case. The piece is
the middle one (median) is chosen and the others are abandonegolyphonic and employs the whole dynamic and pitch range of
The remaining onset candidates are accepted as true ones. A godlde acoustic guitarShortest intenote intervals are only a fif-
value forTs,5 was found to be 28B for signals, whose average teenth of a second. Good results were achieved partly because of
loudnesses had been normalized taBdevel.




Table 1: Summary of onset detection results. centrate on frequencies where structure is found.

signal | worth notice in contenl??]rlf)?: tuenc?ee jextra C(()g/:SCt 6. CONCLUSIONS
We first discussed problems that arise in the one-by-one detection
Chopin acoustic piano 59 | 3| - | 9% of sound onsets. Then a system was described, which builds upon
AldiMeolal acoustic guitar 62 5 1 92 the use of relative diérence function and application of the psy-
Police |singing, el.guitardrumg 49 4 1 920 choacoustic models of intensity coding. This was done in the
U2 el. guitar rif, distorted| 19 1 2 34 framework of the band-wise processing _|(_jea. I_Exp_e_rlmental
- - - results show that the presented system exhibits a significant gen-
Grusin |piano, percussion, drums51 3 - 94 . . . .
. erality in regard to the sounds and signal types involved. This was
MDavis | brasses, double-bass 34 | 2 | 1 | 91 achieved without highdevel logic or a grouping of the onsets.
Miller big band 46 | 5 | 1 | 87 The system introduces only two thresholds that need to be experi-
Bach chamber ensemble | 51 3 1 92 mentally found, i.e., that are not deduced from psychoacoustic
Vivaldi symphony orchestra| 33 7 | 10| 48 metrics. These thresholds are common to all input signals.
Beethoven symphony orchestra| 30 - | 28 7 One of the shortcomings of our method lies in its inability to deal
] ] with a strong amplitude modulation which is met in classical
the absense of noise and other instruments. ensembles and in certain instrumental sounds. In general, the pro-

Police's ‘It's Alright for You' is from rock music genre, domi- Posed system was well able to discern between genuine onsets

nated in loudness by singing, electric guitars and drums. Onsefnd gradual changes and modulations in the sounds themselves.

detection is a success and resembles the results that were derivéd the case of musical signals, an additional higéneel analysis

with other rock-pieces. At some moments singing produced dou-Would still significantly improve the accuracy of the system.

ble-onsets for phonem combinations like “-ps-", where Ipaihd

s produce an onset. All of these occurred inside them&@ime 7. REFERENCES
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ABSTRACT iterate
A processing principle is proposed for finding the pitches and mixture ¢ —IF. B, spectrum
separating the spectra of concurrent musical sounds. The princi- signal Predo_rm- PSP » Remove
ple, spectral smoothness, is used in the human auditory system nant pitch partials
which separates sounds partly by assuming that the spectral enve- estimation from the
lopes of real sounds are continuous. Both theoretical and experi- t ) mixture
store the pitch

mental evidence is presented for the vital importance of spectral
smoothness in resolving sound mixtures. Three algorithms of var-  Fig. 1. Experimental framework: system which can be
ying complexity are described which successfully implement the  switched between two modes) (Straightforward iterative
new principle. In validation experiments, random pitch and sound  approach. ) Spectral-smoothness based model.
source combinations were analyzed in a single time frame.
Number of simultaneous sounds ranged from one to six, databaseo single pitch estimation. This is why most recent MPE systems
comprising sung vowels and 26 musical instruments. Usage of aexplicitly refer to and make use of the human auditory scene anal-
specific yet straightforward smoothing operation corrected ysis principles. In human hearing, the perceptual organization of
approximately half of the pitch errors that occurred in a system spectral components has been found to depend on certain acoustic
which was otherwise identical but did not use the smoothnesscues. Two components may be associated to a same source by
principle. In random four-voice mixtures, pitch error rate reduced their closeness in time or frequency, harmonic concordance, syn-
from 18% to 8.1%. chronous changes in the frequency or amplitude of the compo-
nents, or spatial proximity in the case of multisensor input [1].
1. INTRODUCTION The purpose of this paper is to propose a new efficient mecha-

Pitch perception plays an important part in human hearing and hism in computational MPE ano! auditory organizati@ipectral
understanding of sounds. In an acoustic environment, human ”s_smoothnesaafers to the expectation that the spectral envelopes of

teners are able to perceive the pitches of several simultaneougef’jll s_oun_d sources tend_to be contln_uogs. Bregman points out this
sounds and make efficient use of the pitch to “hear out” a sound in principle in hun‘!an hea_rlng by mentioning that spectral smooth-
a mixture [1]. Computational modeling of this function, multip- Ness prpmote_s '”tegra“on_ of freque_ncy par'qals to a same source
itch estimation, has been relatively little explored in comparison and a single higher intensity partial is more likely to be perceived

to the availability of algorithms for single pitch estimation in asan independen_t sound [1, p.232]. Howe_ver, smoot.hne_ss has not
monophonic speech signals [2]. traditionally been included among the auditory organization cues.

Until these days, computational multipitch estimation (MPE) This phaper pl;rese_nts evidence for the importance of spectral
has fallen clearly behind humans in accuracy and flexibility. First smoot ness _Oth in human a_nd comp_utatlonal MPI_E' AI_SO’_ three
attempts were made in the field of automatic transcription of different algorithms are described that implement this principle.

music, but were severy limited in regard to the number of simulta- Validation experiments were performed using an experimen-

neous sounds, pitch range, or variety of sound sources involvedg’_‘Lmedel' where the spectrall smloo_thnessdwas elthgr gtlllzsd in
[3]- In recent years, further progress has taken place. Martin pro- iflerent ways, or was completely ignored. Acoustic database

posed a system that utilized musical knowledge in transcribing _comprlsed sung vowels and the W_h°|e P'tCh range of 26 musical
four voice piano compositions [4]. Kashinet al describe a instruments. MPE was performed in a single time frame for ran-

model which was able to handle several different instruments [5]. dom pitch and sou_nd source comblna'Flons, number of simultane-

Goto’s system was designed to extract melody and bass lines from°YS sounds ranging from one .to SIX. Inclqdlqg the .spectral

real-world musical recordings [6]. Psychoacoustic knowledge hassmoot_hne_ss pn_nmple in calculations m?de 5|gn|f|cant. improve-

been succesfully utilized e.g. in the models of Brown and Cooke ment in 5|mu_lat|ons. For example, the pitch error rate_ln ranc_iom

[7], Godsmarket al [8], and de Cheveigne and Kawahara [9]. four-vo!ce ml_xtures dropped from 18 % to 8.1 %, and in musical

Also purely mathematical approaches have been proposed [10]. four-voice mlxturfes from 25 % to 12 % AS_ a result, MPE cpuld
Multipitch estimation and auditory scene analysis are inti- be per_formed quite accurately at a wide _p'tCh range and without

mately linked. If the pitch of a sound can be determined without a priori knowledge of the sound sources involved.

getting confused by other co-occurring sounds, the pitch informa- 2 EXPERIMENTAL ERAMEWORK

tion can be used to organize simultaneous spectral components to '

their sources of production. Or, vice versa, if the spectral compo- Figure 1 shows the overview of the system which acts as an

nents of a source can be separated from the mixture, MPE reducesxperimental framework in this paper. The system can be
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switched between two modes. The straightforward iterative MPE ‘
model, denoted by brandk has been described earlier in [11]. It 8F 4/ 312 1
consists of two main parts that are applied in an iterative succes- 5/ 4
sion. The first part, predominant pitch estimation, finds the pitch | 2 3 |
of the most prominent sound in the interference of other harmonic L 513 (p12/5 i
and noisy sounds. As an output, it gives the fundamental fre- ‘“ T T T 8
guencyF, inharmonicity factof3, and the precise frequencies and r 1
amplitudes of the harmonic partials of the sound. In the second 0 | I II II III IIII |I".IIII||<P|I_|
part, the spectrum of the detected sound is linearly subtracted 0 4 8 12 16 20 24 28 32 36 40
from the mixture. These are then repeated for the residual signal. interval (semitones)
A spectral-smoothness based model is obtained by locating an  Fig. 2. Distribution of the pitch estimation errors as a function
additional module between the estimation and subtraction stages. ©f the musical intervals that occur in the erroneously tran-
This is denoted by brancB in Fig. 1. The aim of the spectral scribed sound mixtures.
smoothing algorithm is to use the pitch information to produce a ) o )
more appropriate estimate for the spectrum of a separated soundhase differencé, coincide in frequency, the amplitude of the
before it is subtracted from the mixture. The need for such a mod- '¢Sulting sinusoid can be calculated as
ule is strongly motivated by two observations. The predominant ag = ‘al + a2e' SA‘ . Q)
p?tch estimation algorithm is capaple qf find_ing one of thg COITeCt ¢ e two amplitudes are roughly equivalent, the partials may
pitches with 99 % ce.r.talnty even in six-voice polyphonles [11]. either amplify or cancel each other, depending@gnHowever, if
Hoyvever, the p.ropabyllty of error Increases ra‘?'d'y in the course one of the amplitudes is significantly larger than the other, as is
of iteration. Thls indicates th_at the _mmal esymatg of a sound usually the case,approaches the maximum of the two.
spectrum as given by predominant pitch algorithm is not accurate
enough to remove it correctly from the mixture. 3.2 Fundamental frequency relations
The condition that a harmonic partialof a soundS coincides a
3. DIAGNGSIS OF THE STRAIGHTFORWARD harmonicj of another soundR can be written ashFg = jFg ,
ITERATIVE SYSTEM whereFg and Fg are the fundamental frequencies, and the two
Simulations were run to analyze the behaviour of the straightfor- sides represent the frequencies of the partials. When the common
ward iterative estimation and separation approach, i.e., the brancHactors of integerk andj are reduced, this yields
A in Figure 1. Random mixtures & sounds were generated by - Me )
first allotting an instrument and then a random note from its R™n s
whole playing range, however, restricting the pitch over five where(m, n)=1 are integer numbers. This implies that partials
octaves between 65Hz and 2100 Hz. The desired number ofof two sounds can coincide only if the fundamental frequencies of
sounds was allotted, and them mixed with equal mean square levthe two sounds are in rational number relations. Furthermore,
els. The iterative process was then evoked and requested to extragihen the fundamental frequencies of two sounds are in the above
N pitches from the acoustic mixture signal. As a general impres- relation, then everynth harmonicmk of the soundS coincides
sion, the presented iterative approach works rather reliably. everynth harmonicnk of the soundR at their common frequency
However, an important observation is immediately made bands, where integek>1 . This is evident sincEg equals
when the distribution of the remaining errors is analyzed. Figure 2 jF for each paih=mkandj=nk, when Eg. (2) holds.
shows the errors as a function of the musical intervals that occur  An important principle governing music is paying attention to
in the erroneously transcribed sound mixtures. It appears that thethe pitch relations, intervals, of simultaneously played notes. Sim-
error rate is strongly correlated with certain pitch relations. More ple harmonic relations satistying Eq. (2) are favoured over disso-
exactly, the straightforward estimation and subtraction approachnant ones. Although western music arranges notes to a quantized
is likely to fail in cases where the fundamental frequencies of |ogarithmic scale, it can surprisingly well produce the different
simultaneous sounds are in simple rational number relations, alscharmonic intervals that can be derived by substituting small inte-
called harmonic relations. These are indicated over the corre- gers to Eq. (2) [3]. Because harmonic relations are so common in
sponding bars in Fig. 2. music, these “worst cases” must be handled well in general. Also,
this explains why MPE is particularly difficult in music.

3.1 Coinciding sinusoidal partials

It turned out that coinciding frequency partials from different 4. SOLUTION AND ITS ARGUMENTATION
sounds make the algorithm fail. If sounds are in a harmonic rela-
tion to each other, a lot of partials coincide, i.e., share the same

frequency. When the firstly detected sound is removed, the coin- i . ;
be erroneously removed along with the one that is being actually

ciding harmonics of remaining sounds are also removed in the separated. This causes undetections. Second, two or more funda
subtraction procedure. In some cases, and particularly after Sev_mcfntal fre. uencies in certain relatioﬁs ma m,ake a non existent-
eral iterations, a remaining sound gets too corrupted to be cor- q Y

rectly analyzed in the coming iterations “ghost” sound appear, for example the root pitch of a chord. This

When two sinusoidal partials with amplitudes anda, and causes insertion errors, i.e., extraneous pitch detections.
2 There is a solution to these problems that is both intuitive,

The difficulties caused by harmonic pitch relations can be classi-
fied into two categories. First, the partials of an other sound may



out single higher amplitude harmonic partials.
40r

& 4.2 Three smoothing algorithms
T 301 \ "'J ‘ ‘ ’ A computer implementation of the implicit smoothing in the
5 2ol ' " ‘ | human auditory system can be isolated to a separate module. The
g’ “ ‘ | .m" "" l ] ‘ ] J algorithm simply goes through the harmonic partials of a sound
T 10H \ \ ‘ ‘MM L | and replaces the amplitudg of partial h with the minimum of
£ 0 ! “ N W \ L H. M“\"Il'l w‘ 1III‘WI the amplitudes of the partial and its neighbour
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Interestingly, performing this simple operation in the spectral
smoothing module of Fig. 1 corrects about 30 % of the errors of
éhe straightforward iterative model. For example, the error rate in
random four-voice mixtures reduces from 18 % to 12 %.

A still more efficient algorithm can be designed by focusing
efficient, and psychoacoustically valid: the spectra of the detectedon the role of the smoothing algorithm. It is: to cut off single
sounds must be smoothed before subtracting them from the mix-clearly higher amplitude partials. Equation (3) surely does that,
ture. Consider the logarithmic magnitude spectrum of a two- but bases the estimate on two values only. The robustness of the
sound mixture in Fig. 3. The harmonic partials of the higher- method can be improved by imitating the calculations of the
pitched sound coincide every third harmonic of the lower-pitched human auditory system at bandlimited frequency channels.
sound, which has been detected first. As predicted by Eq. (1), the  The second algorithm first calculates moving average over the
coinciding partials of the detected sound tend to have higher mag-amplitudes of the harmonic partials. An octave wide Hamming
nitudes than the other ones. However, when the sound spectrum isvindow is centered at each harmonic partialand a weighted
smoothed (thin slowly decreasing horizontal curve in Fig 3), these meanm, of the amplitudes of the partials in the window is calcu-
partials rise above the smooth spectrum, and thus remain in thelated. This is the smooth spectrum illustrated by a thin horizontal
residual after subtraction. In this way, the other sound is not curve in Fig. 3. The original amplitude valig is then replaced
removed with the detected one. When properly applied, the samewith the minimum of the original and the averaged amplitude
mechanism can be used to treat ghost sounds, too. a, — min(a, m,) . (4)

Fig. 3. lllustration of the spectral smoothness principle. Loga-
rithmic magnitude spectrum containing two sounds, lower of
which has been detected first. The spectrum has been high-pas
liftered to remove spectral envelope.

4.1 Psychoacoustic knowledge applied These values are illustrated by a thick horizontal curve in Fig. 3.

The design of the smoothing operation is not as simple as it SeemsThls straightforward algorithm is already almost as good as could

to be at the first glance. As a matter of fact, simply smoothing the be designgdh For examzle, fordr?ndomgfgur-vglgeo mixtures, the
amplitude envelope (thin horizontal curve in Fig 3) before sub- 2verage pitch error rate dropped from 18 % to 8.9 %.

traction from the mixture doasotwork in the sense that it would lizi A f'r?al S“th_ |m|p:jrovemdent to tt;e rg;}]hrcl)d can pe ma_dtla by uti-
reduce the pitch error rate in simulations. izing the statistical dependency of ev armonic partials, as

Spectral smoothing in the human auditory system does not explain_ed in Se(_:. 3.2. The third algorithm appligs a multistage fil-
take the form of lowpass filtering. Instead, a nonlinear mechanism ter \évflcz ﬁonsllqstz of tfhf] fﬁllowmg. step;.lFlrst, tzeh numbgrs
cuts off single higher amplitude partials. In following, a brief E] 1'"’ +(1j‘f+ -} of the armgnlclpzrtlasarounh armonlc(:j
description of the human auditory processing is made in order to "' '€ €0 ected from an octave wide window. Next, the surrounc-
reveal the exact mechanism of an appropriate smoothing processin9 partials are classified into groups, where all the harmonics that

Meddis and Hewitt have proposed a computer model of share a common divisor are put to a same group. Third, estimates
human auditory periphery which aims at reproducing a widest for harmonich are calculated inside groups in the same manner as

range of phenomena in human pitch perception [12]. The algo- in the second algorithm. In the last step, the estimates of different

rithm consists of four main steps. First, the input signal is passed groups are averaged, weighting each group according to its mean

through a bank of bandpass filters. At each band, the signal isdlstance from harmonic
halfwave rectified and lowpass filtered to extract the amplitude Th_e _other problem ca_lteg_ory, that of ghost s_oundsf was solved
envelope of the bandpassed signal. Periodicity in the resulting sig-by hoticing that that the likelihood of a predomlna_nt pitch should
nal is detected by calculating autocorrelation function estimates be re-estimated aft_e_r the new smooth spectrum is calcula_ted. An
within channels. In the final phase, the estimates are linearly g)fample case clanifies why an erroneous sound may arise as a
summed across channels to get a summary autocorrelation funcloint effect qf the others and how Fhe problem can be solved. If
tion, the maximum value of which points out the global pitch. two harmonic sounds are played with fundamental frequenéies 2
Amplitude envelope calculation within channels performs and 3, the spectra of these sounds match every second and every

implicit spectral smoothing. When a harmonic sound is consid- third harmonics of a non-existent sound with fundamental fre-

ered, each two neighbouring harmonic partials cause amplitudeq_uency':’ which is erroneously credited for all the opserved par-
beating i.e., alternatingly amplify and cancel each other at the tials, and thus appears as a ghost sound. However, if the harmonic

fundamental frequency rate. However, the magnitude of the beat_amplit.udes of the ghost sqund are smoothed and its likelihood is
ing caused by each two sinusoidal partials is determined by there-estlmated, the irregularity of the spectrum decreases the level

smaller of their amplitudes. When the spectrum of a harmonic ©f the smooth spectrum, and the likelihood remains low.
sound is considered, this “minimum amplitude” property filters
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Table 1: Pitch error rates using different smoothing algorithms. 2 Random mixturas g Mu5|cal mixtures
> 20 : ~ 20
Applied smoothing Random mixtures Musical mixtures, % 15 % 15
algorithm four voices four voices - =
S 10 2 10
—None— 18 % 25 % o o
SMOOTH 18 % 24.% g 5 Eg R Q Q
MIN (1st) 12 % 17 % = OWE = 0’—‘
SMOOTH+MIN (2nd) 8.9 % 13 % p0|yph0ny p0|y|0h0ny
STAT+MIN (3rd) 8.1 % 12 % Fig. 4.Pitch error rates for multipitch estimation in different

polyphonies. Bars represent the overall error rates, and the
different shades of gray the error cumulation in iteration.

5. SIMULATIONS RESULTS .
envelopes of natural sounds are rather continuous seems to hold,

A lot of simulations was run to verify the importance of the pro- since the smoothing operation can be done without noticeable

posed spectral smoothness principle and to compare the describefbss of information from the MPE viewpoint.

three algorithms. Table 1 gives the pitch error rates using different

spectral smoothing algorithms. Algorithms are listed top—down in 7. REFERENCES
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Abstract: An algorithm is proposed which calculates a computationally efficient approximation of a certain physiologically-moti-
vated representation for sound, called the summary autocorrelation function. This representation has been found very useful in several
tasks, such as sound separation, multiple period estimation, and computational auditory scene analysis. However, it has been computa-
tionally too complex for most practical applications. The relatively fast algorithm described here proposes only an approximation of
the summary autocorrelation function, but the achieved precision is likely to be good enough for most applications.

1. INTRODUCTION

The human auditory system is amazingly efficient in analyzing
complex acoustic environments. It enables us to perceive and
recognize simultaneously occurring sounds almost as easily as
if the sounds would have been presented separately.

In performing analysis of acoustic signals, it is not only the
algorithms that are important, but also the data representations.
Analysis can be viewed as a hierarchy of representations from
the acoustic signal up to a conscious percept [1]. While the lat-
ter usually cannot be directly deduced from the acoustic input,
intermediate (mid-level) representations between these two are
indispensable. Whereas we know rather little about the exact
mechanisms of the brain, there is much wider consensus about
the mechanisms of the physiological and more peripheral part
of hearing. Moreover, precise auditory models exist which are
able to calculate certain fundamental mid-level representations
of hearing, such as the signal in the auditory nerve [2].

Correlogram has been widely accepted as being among the
most generic and psychoacoustically valid mid-level representa-
tions. It models the physiology of hearing plus some psychoa-
coustic mechanisms, and is calculated as follows [3,1]:

1. Input signal is passed though a bank of bandpass filters
which represent the frequency selectivity of the inner ear.

2. Signal at each frequency channel is half-wave rectified and
lowpass filtered.

3. Periodicity estimation within channels is done by calculat-
ing short-time autocorrelation functions (ACF).

4. Periodicity estimates are aggregated across channels to
obtain summary autocorrelation function (SACF) defined

S0 = 3o oD M

Where r (1) is the autocorrelation function in time frame ¢ at
frequency channel c.

The above calculations produce a three-dimensional volume
with dimensions (i) time, (ii) frequency, and (iii) ACF lag.
While the correlogram has proved very generic and efficient
mid-level representation for audio analysis, it is easy to see that
it is computationally very complex and data intensive, since the
number of frequency channels in different models varies
between 40 and 80. Data intensiveness is easily solved, since
most analyses can be performed using only two marginal func-
tions: rough spectral envelope, it is, I .(0), and the summary
autocorrelation function. Rough spectral envelope forms the
basis for sound source recognition and speech recognition, and
several efficient methods exist to calculate it. However, SACF
remains a computational nightmare, although it has been found
to be very valuable in several tasks, such as sound separation,
multiple period estimation, and computational auditory scene
analysis [5,6,1]. In particular, SACF-based models have been
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Figure 1. Roex (dashed line) and Flex (solid line) filter
responses as a function of g, g=|ff,| / ...

shown to reproduce a wide range of characteristics of the
human pitch perception [4].

In this paper, we propose a computatinally efficient method
to calculate an approximation of SACF in the frequency
domain. Whereas only an approximation is achieved, it should
be noted that the SACF is not used for sound synthesis but to
indicate perceptually relevant data, such as the highest SACF
peak indicating the pitch period. For such analysis applications,
the precision of the approximation is by far sufficient.

1.1. Auditory filterbank

The auditory frequency analyzer is usually modeled as a bank
of overlapping, linear, bandpass filters. The equivalent rectan-
gular bandwidths (ERB) of the auditory filters have been meas-
ured through listening tests, and can be calculated as [7]:
ERB(f.) = 24.7[1+4.37f /1000] . 2)

where the center frequency and bandwidth are in Herz units.

Important characteristics of the auditory filterbank are that
the auditory filters are approximately uniformly distributed on a
logarithmic frequency scale, the bandwidths are according to
Eq. (2), and that the number of filters is large enough to make
the passbands of adjacent filters overlap much.

The exact shape of the response of individual filters can be
modeled with Rounded-exponential, Roex(p), filters [7]:

[H(9)12 = (1+ pg)e P9 3)
where g = |f —f |/ f is the relative distance from the center
frequency, and p is a parameter determining the bandwidth of
the filter. Roex response is illustrated with dashed line in Fig. 1.

2. FAST APPROXIMATION

A starting point for performing the above-described correlo-
gram calculations efficiently is to analyze the four calculation
phases in the frequency domain. This inevitably leads to frame-
based processing. However, this is not a serious problem, since
the autocorrelation function calculations involved in the con-



ventional SACF calculations are in practice always performed
on a frame-by-frame basis to allow FFT-based ACF computa-
tions. We use X(k) to denote the complex-valued discrete Fou-
rier transform of a K-length frame of the acoustic input signal
x(n). The discrete frequency variable k O [-K/2, K/2] .

The calculations are first presented straigthforwardly in the
frequency domain in a manner that is not faster than the conven-
tional calculations, and then the fast way is shown.

Phase (1): band-pass filtering. Filtering x(n) with a linear
bandpass filter h (n) is equivalent to multiplying X(k) with the
frequency response of the filter, X (K) = H (k) X(k).

Phase (2): halfwave rectification (HWR) and lowpass filter-
ing. The non-linear HWR operation is an essentially important
part of the correlogram model. For a narrowband signal x.(n)
centered at f,, HWR generates spectral components to bands
centered on zero frequency, on f, and on integer multiples of £,
without upper limit (see the standard analyses in [8]). It can be
shown that the desirable properties of SACF are due to the fre-
quency bands centered on zero frequency and on f,.. The higher
frequency components, here called the harmonic distortion
spectrum, are unnecessary and cause inevitable aliasing in dis-
crete signals. Therefore, we use the following techique to calcu-
late the spectrum W,_(k) of the rectified signal at channel c, so
that aliasing and the distortion spectrum are rejected. As shown
in [8], the spectral region generated by HWR to the band around
zero frequency is a scaled version of the spectrum generated by
squaring the signal, if the harmonic distortion spectrum is
ignored, which causes an error smaller than 3 % around center
frequency. The spectrum around f,. in the output of HWR, in
turn, is that of the input narrowband signal X(K) . Thus we use
a model for the spectrum of the rectified signal at channel c:

W.(K) = V (K)/(40,) + X (K). 4

where V(k) is the spectrum of a squared time domain signal,
lowpass filtered to pass only the band around zero frequency
(up to f), and 0, is the standard deviation of the signal at chan-
nel c. It is easy to verify this approximation of the HWR.

Squaring in time domain is equivalent to convolution in fre-
quency domain, thus we write

K/2-%
Ve(@) = 5 [H(X(K)H (k+8)XH(k +8)] )
k=-K/2+d
for 8<f,, and V(8) = O otherwise. Vector XH(k) is the com-
plex conjugate of X(k).

Phase (3): within-channel periodicity extraction. Autocor-
relation function calculation in time domain is equivalent to cal-
culating the square of the absolute value of the Fourier
transform of the signal. Thus the Fourier transform R_(k) of the
autocorrelation function 7,(T) of the rectified signal at frequency
channel c is obtained as

Ry(K) = [Vo(K)/ (40,) + Xo(K)|2. (6)

Phase (4): across-channel aggregation of periodicity esti-
mates. Summary autocorrelation function s(7) is calculated in
time domain according to Eq. (1). Since Fourier transform and
its inverse are linear operations, we can sum R (K) already in
the frequency domain to obtain the Fourier transform of s(T) ,

SOEBYLIC) )

and then perform a single inverse Fourier transform to obtain
the summary autocorrelation function s(T).

2.1. Observation which leads to fast implementation

The presented frequency domain calculations as such are not
essentially faster than the conventional ones. They include one
computationally very intensive operation: spectral convolution
to obtain the spectrum of rectified signal, V.(k).

Core idea behind the fast approximation is the observation
that very efficient iterative update rules exist to calculate V (k)
from V,_;(k). Thus we only need to initialize V' (k) for c=1, and
then iteratively calculate V (k) for all channels ¢ using the
update rules to be described below. Spectrum of SACF, S(k),
can then be calculated straightforwardly from Eq. (7) for this
particular value of k, and computations then proceed to next .

Such update rules exist for a certain family of bandpass fil-
ters, flatted-exponential filters, defined below.

2.2. Bank of flatted-exponential bandpass filters

The center frequencies and ERB-bandwidths of the bank of fil-
ters H (k) to be considered in the rest of this paper are as fol-
lows. Channel index ¢ goes from 1 to K/2, where K is the size of
the time frame. The center frequency of the filter at channel c is
f x c/K, thus there is one filter corresponding to each posi-
tive frequency sample k of X(k). ERB-bandwidths for channel ¢
are obtained from Eq. (2) and are in frequency sample units

Wc = Bl + Bzca (8)
where B, = 24.7f /K, B,=4.37/1000, and w,. is real-valued.

Because the desired distribution of frequency bands is not
linear, the different channels in the sum of Eq. (7) can be
weighted to correspond to an arbitrary distribution of channels,
e.g. weights 1/c corresponding to a logarithimic distribution.

We define Flatted-exponential, Flex(p), filter to have unity
response around the center frequency, followed by an exponen-
tially decaying magnitude response further away from the
center frequency. The response is illustrated in Fig. 1. The slope
of attenuation is the same as the in Roex(p) filter:

1 9g<dp
He(9) = O

expl-p(9-9q)/ 2] g9,
where g can now be written as g = |k—c|/c.

The parameter g, i.e., the half-width of the flatted top can

be solved by requiring that the ERB-bandwidths of Flex(p) and
Roex(p) filters must be equal for a given parameter p. Writing
the integrals over the squares of the two responses to be equal,
we can solve gy = 1/p, where p, = 4c/Ww; is a function
of ¢, and Eq. (9) can now be written as

)

k—csw./4

Hok) = BeXp[—Z\k—C\/WC+ 1721 |k-d zwc/4(10)

2.3. Convolved response

The spectrum V(8) at channel ¢ can be calculated using con-
volution, as shown in Eq. (5). We denote the terms in Eq. (5)

Z5(k) = X(k)XHk +9), (11)
and the convolved response at channel ¢
Jc 5(K) = He(K)H(k+9). (12)

Substituting Egs. (11) and (12) to Eq. (5) and observing that
the spectrum is conjugate symmetric for real signals, i.e.,
X(—k) = XH(K), we can limit the sum to positive frequencies
and write Eq. (5) as

Ve®) = 25 13 5 Z5(K) (13)
The term Zg(k) is common to all frequency channels. However,
the term J, g(k) varies for each channel. Conjugate symmetry
applies to V(8) , too, thus we only need to calculate for 6= 0.
Based on Eq. (13), we can also assume k=0.

The convolved response J; 5(k) can be of two different
types, depending if the flatted tops of the two Flex responses
overlap or not, as shown in Fig. 2. Type is T if d<2| w/4 |,
and type II otherwise. Both are of the same general form, con-
sisting of five parts, denoted 4, B, C, D, and E in Fig. 2. The
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Figure 2. The two different types of the convolved responses.

convolved response is thus defined piecewise as

%095(k) KO [0, Kyl
Des(k)  kDO[ky+1 kgl
Jo 5(k) = Eugé(k) kO [kg+1,kp—1] (14)
Dos(k) kO [kp ke—1]
%Jﬁé(k) kO [ke, K/2]

The formula for each of the five parts of the convolved
response Jg 5(k) can be calculated by substituting the Flex(p)
response from Eq. (10) to Eq. (12). The resulting expressions
are the same for the two types, except for the part C, for which
we denote C1 for type I and C2 for type II. The formulae are

IAE(K) = exp(=2l2k +3—2cl/w, +1) (15)
3¢ 5(k) = expl-2(c—k)/w,+1/2] (16)
Ioak) =1 (17)
JS%(k) = exp(—28/w,+1) (18)
JcD,s(k) = eXp[—Z(k+5—C)/WC+1/2] (19)
And the discrete boundaries ky < kg < k- <kp :
ko = c=3—[Wc/4] (20)
kBl = C—’rwc/4—‘ (21)
sz =c-0+ LWC/4J (22)
kpp = =3+ w/4] (23)
kD2 = C—LWC/4J (24)
ke = c+[w/4] (25)

where the formulas for the limits kg and kj, are different for the
two response types, as can be seen.
The overall sum V(8) in Eq. (13) can then be written as

Vo(8) = VAB) +VI(8) + VE(8) + VO (8) + VE(B) (26)

where V? (), for example, can be calculated as
B sy _ <K B
Ve®) = 3 198 525K 27)

2.4. Update formulas to calculate V' (d) efficiently

Each part (4,B,C,D,E) of V(8) can be calculated iteratively
from V_4(8), or from V., 1(8), in constant time (O(1)) with
few simple operations. The update rules are very similar for dif-
ferent parts, thus it suffices to thoroughly explain one part, let it
be part B, which is illustrated in Fig. 3. 8

For part B, the algorithm to calculate V_(d) , according to
Eq. (27), for ¢=1,...,K/2 and for fixed & is:

Multiply:

explVg(O)] Ve 1(3)

Add:

32 5(kg) Zs(ks)

Subtract:

BoZs(Ka) %10 440 470 500 f
Figure 3. Update rules to calculate VCB (6) from VCB _1(9).

Initializations. Calculate Zg(k) according to Eq.(11), set
C«~ 1, V{(8) ~ 0, determine the type of the response, and
calculate the corresponding boundary values k, and k.
Iterative calculation of V (8) for c=2,...,K/2:
Step 1. Store the current boundaries ki ~ Ka, kg - kg
Step 2. Set ¢ — c+1 and calculate the corresponding new
response type and boundaries.
Step 3. Set VE(3) « explyg(C)]VE_1(8) , where yg(c) <0 is
a real number to be determined below.
Step 4. If kg > kg
- Add new value VE(3) — VE(8) + g 5(kg)Zs(Ks)
*  Remember ¢ which captured kp: n(kg) ~ ¢
Step 5. 1f kp > K
*  Recall c© = n(k,)
. SubtractBold value VS(5) - V?(é) - Boza(kA)’ where
By = Jeo 5(Ka)explyg'(c) —vg'(c?)] and yg'(c) is
cumulative sum over yg(C) .
Step 6. If c<K/2, return to Step 1.

Three update rules are embodied in the above algorithm, as
illustrated in Fig.3. The first rule is that always when ¢
increases, the overall sum is multiplied with factor
exp[yp(c)]<l, making old values exponentially leak out from
the sum as they get further away from the center frequency. Sec-
ondly, if the boundary kg changes, a new value is included to
the sum VCB(B) according to Eq. (27). In the third rule, a sam-
ple has to be removed from the sum in the case the boundary k,
changes. To do that, we have to know exactly the factors with
which t}ée sample has been multiplied during it belonging to the
sum V. (8). This is calculated in the value B,. The factor
J o, 5(Ka) was used when the sample was first included to the
sum. The cumulative effect of repeated multiplying with values
exp[Yp(c)],....exp[yp(c®)] can be efficiently solved using a
cumulative  sum yBT(C) ,  Where yBT(l) = vyg(1),
vg'(2) = yg(1) +yg(2), and so on.

The values of yp(c) remain to be solved. It should be
emphasized, that these constants are the same for all d and in all
time frames, and thus need to be initialized only once. Writing

3e5(K) = explvg(©)] Iy 5(K) (28)
reveals that a value that would lead to exact update rule does not
exist, because w, and thus the slope of attenuation changes as a
function of ¢. However, an approximation is derived by starting
with a value which realizes the slope of attenuation for the cur-
rent w,.. Reading from Eq. (16):

yg'(C) = =2/w,. 29)
As a next step, we force the attenuation caused by successive
multiplications to reach —3 dB level exactly at a same distance
from ¢ as in the ideal response J; 5(K). It is, we force the
—3 dB bandwidth of the convolved response to be according to
the ideal. The ideal —3 dB point can be found by writing
JE s5(Kg) =1073/10 k< c, from which ky is easily solved.
Then we find a center frequency ¢, for which the boundary kg is
ko, assuming response type 1. Value ¢ is got from Eq. (21).

The realized attenuation at point k, through successive mul-
tiplications with yg'(c) is now denoted exp(Ag) . Value of A



can be calculated by integrating yg'(c) from ¢ to c, yielding
Ag = ~(2/By)In(w/w ). (30)

Finally, the formula for yg(c) which works out the desired
—3 dB bandwidth is obtained by using a correction term for
Yg'(C) , where desired attenuation is divided with the realized:

yg(©) = [log(10-3/19)/ Al (—2/w,) . 31)

For part A, all is very similar. Only two update rules are
applied, since no values drop from the sum. At each iteration

Ve(3) = explya(©)]Ve_(9), (32)
where y,(C) is simply y,(C) = yg(C) + yg(C), since the slope
of attenuation for part 4 is twice steeper than for part B. New
values Jé 5(Ka)Zs(ky) are added whenever k4 changes.

For part D, the calculations are analogous to part B, except
that for numerical reasons it is essentially important to start
from ¢=K/2, and iterately calculate V?(é) for decreasing val-
ues of c¢. The three update rules are analogous to part B and the
values Y(C) are determined through the same procedure.

For part C, exact update rules can be written for both types
of the convolved response. However, since the level of the flat-
ted top for type II decreases together with bandwidth w,, it is
numerically advantageous to perform the calculations for
decreasing values of ¢, starting from ¢=K/2. The response type
may change on the way.

Initializations. Set C — K/2, determine type type of the
response, calculate boundaries kg and kp, and initialize
JE/Z’ 5(K) according to Egs. (17) and (18).

Iterative updating: If the response type is I, we only need to
take in and drop out values when boundaries kg or kp change.
However, if the type is II and the previous type was I, we set

C C
V¢ (0) — explyc(e)] Ve, 1(9), (33)
where y-(C) can be solved exactly by writing
355K = eXplve(O gt 5(K) (34)

from which y(c) = (=28B,)/[w (W, + B,)] .
If the response type is II and the previous type was I, we set

Ve (8) « I 3(KIVE,1(3). (35)

Adding new values and subtracting dropping values is relatively
easy since the summing area is flat.

The overall response V() is obtained by summing the
different parts, as shown in Eq. (26).

2.5. Including the original spectrum

According to Eq. (4), the spectrum of the signal at channel c,
X(K) has to be added before calculating the ACF spectrum in
Eq. (6). This is easier than it first seems. The spectra of V (k)
and X (k) are non-overlapping, thus the two terms in Eq. (6)
can be squared independently and then summed. In fact, the
both terms can be squared and summed as late as in Eq. (7). It
follows that in Eq. (7) we sum together |X(k)|? from all dif-
ferent bands. Since the channel density is very high, and chan-
nel distribution is usually designed so that the bands together
sum to unity, we can use |X(K)|2 in Eq. (7), and the spectra
X.(k) do not need to be calculated at all.

3. PRECISION OF THE APPROXIMATION

Figure 4 illustrates the spectral densities of the ideal convolved
response J. 5(K) (thick curve), the iteratively calculated
response (thin curve close to the ideal), and the error between
these two (thick broken curve). Due to the iterative calculations,
bandwidth tends to be smaller than desired on the left side of
the center frequency and vice versa. Error for part C is zero, and
separate plateaus of error can be seen for the other four parts.

0

2 -50

~100 £/ Hz
600 900 1200 1500 1800
Figure 4. Spectral densities of the ideal convolved response
(thick), realized response (thin) and the error (lower curve).

Signal-to-noise ratios between the ideal response \E(k)
and the approximation were calculated as

SNR =1010g,0[ 5 2% [T 3001/ 325 5 Eq 52 G6)

where E 5(K) is the difference between the ideal and the real-
ized response. SNR values were found to be essentially inde-
pendent of the center frequency and of the frame length, but to
depend on 6, being 49 dB, 47 dB, 37 dB and 30 dB for & values
0, 0.5w,, w,, and 2w,, respectively. Actually the level of the
error stays persistenty around —50 dB, but as the level of the
ideal response gets smaller for type II according to Eq. (18), the
level of the error in relation to the ideal gets higher.

Based on the above simulation results as such, it can be
shown that the precision of the spectrum of the SACF is of the
same order. This is because each sample Zz(k) in Eq. (13)
coincides with different parts of the convolved responses of the
frequency channels surrounding it. Thus each sample gets
weighted with all parts of J; 5(K) , resulting in same precision.

4. COMPUTATIONAL COMPLEXITY

The complexity of the conventional way of calculating the cor-
relogram is O{ N x [KM + Klog(K)]} , where N is the number
of frequency channels, M =15 is the sum of the orders of the
bandpass and lowpass filters applied, and Klog(K) stands for the
ACF calculations via FFT.

In the presented method, FFT and its inverse are
O[K xlog(K)] complex operations. In bandpass filtering and
rectifying the signal at all bands, we calculate the O(K) com-
plex iterative process for each value of 8. The complexity thus
becomes O{ K x [§,,,., +10g(K)]} . A practical and safe value
for 8, is frequency sample corresponding to 1 kHz. For any
reasonable selections for &, the complexity 8., +109(K)
is significantly smaller than N x [M + log(K)] .
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Multiple Fundamental Frequency Estimation Based
on Harmonicity and Spectral Smoothness

Anssi P. Klapuri

Abstract—A new method for estimating the fundamental related to pitch and is defined as the inverse of the period, i.e.,
frequencies of concurrent musical sounds is described. The the time shift for which the time-domain signal shows high cor-
method is based on an iterative approach, where the fundamental (o |ation with itself. In cases where the fundamental period is

frequency of the most prominent sound is estimated, the sound . . Lo . S
is subtracted from the mixture, and the process is repeated for ambigous, a candidate closest to the subjective pitch period is

the residual signal. For the estimation stage, an algorithm is pro- regarded as the correct FO.
posed which utilizes the frequency relationships of simultaneous  Musical signals are natural candidates for the problem of
spectral components, without assuming ideal harmonicity. For the multiple-FO estimation, in the same way as speech signals
subtraction stage, the spectral smoothness principle is proposed 4y natyral candidates for single-FO estimation. Automatic
as an efficient new mechanism in estimating the spectral envelopest it f L t extracting th itch ¢
of detected sounds. With these techniques, multiple fundamental _ranscrlp lon o mUSIC ams at extraciing : € pic e_s, onse
frequency estimation can be performed quite accurate|y in a tlmeS, and durat|0ns Of the notes that constitute the plece. The
single time frame, without the use of long-term temporal features. first multiple-FO algorithms were designed for the purpose
The experimental data comprised recorded samples of 30 musical of transcribing polyphonic music in which several sounds
instruments f_rom_four different sources. Multiple fundamental are playing simultaneously. These attempts date back to
frequency estimation was performed for random sound source and 1970 hen M built tem for t ibing duets. i
pitch combinations. Error rates for mixtures ranging from one to S’_W en oo_re_r Uit a system for ranscrl_ Ing duets, 1.e.,
six simultaneous sounds were 1.8%, 3.9%, 6.3%, 9.9%, 14%, and two-voice compositions [6]. The work was continued by Chafe
18%, respectively. In musical interval and chord identification and his collegues [7]. Further advances were made by Maher
tasks, the algorithm outperformed the average of ten trained [8]. However, the early systems suffered from severe limitations
musicians. The method works robustly in noise, and is able 10 j, vagard to the pitch ranges and relationships of simultaneous
handle sounds that exhibit inharmonicities. The inharmonicity d d th Ivoh tricted to t ¢
factor and spectral envelope of each sound is estimated along with sounds, an e_ polyphony was res r'_C ed 1o two concurren
the fundamental frequency. sounds. Relaxation of these constraints was attempted by
allowing some more errors to occur in the transcription [9], or
by limitation to one carefully modeled instrument [10], [11].
More recent transcription systems have recruited psychoa-
coustically motivated analysis principles, used sophisticated

. INTRODUCTION processing architectures, and extended the application area to

ITCH perception plays an important partin human heari,fd)mpgtational audi_tory scene a.naly.sis in general [12]. Kas_hino
Pand understanding of sounds. In an acoustic environme®t, &l integrated signal analysis with temporal and musical
human listeners are able to perceive the pitches of several sinfigdictions by applying a Bayesian probability network [13].
taneous sounds and make efficient use of the pitch to acouMartin utilized musical rules in transcribing four-voice piano
cally separate a sound in a mixture [1]. Computational metho@@Mpositions [14]. Front-end processing in his system was
for multiple fundamental frequency (FO) estimation have r@erformed using a log-lag correlogram model of the human
ceived less attention, though many algorithms are available f{ditory periphery, as described in [15]. Goto was the first
estimating the FO in single-voice speech signals [2]-[4]. It & introduce a system vyh|ch _works regsopably accurately for
generally admitted that these algorithms are not appropriate'3/-world complex musical signals by finding the melody and
such for the multiple-FO case. bass lines in them [16]. _

A sound has a certain pitch if it can be reliably matched Multiple-FO estimation is closely related to auditory scene
by adjusting the frequency of a sine wave of arbitrary ampfnalysis: any algorithm that can find the FO of a sound and
tude [5]. Pitch is a perceptual attribute of sounds. The corr@0t get confused by other co-occurring sounds is, in effect,
sponding physical term FO is defined for periodic or nearly p€l0ing auditory scene analysis [1, p. 240]. Because the human
riodic sounds only. For these classes of sounds, FO is clos@ifitory system is very accurate in performing this task,

imitation of its processing principles has become common and
psychoacoustically inspired systems in general have been rel-

Manuscript received November 29, 2001; revised April 16, 2003. Th§¥ive|y successful. Brown and Cooke have built computational
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that the model could segregate melodic lines from polyphonitying a wide pitch range, varying tone colors, and a particular
music [18]. need for robustness in the presence of other harmonic and noisy
The unitary model of pitch perception proposed by Meddsounds.
and Hewitt has had a strong influence on FO estimation re-An overview of the proposed system is illustrated in Fig. 1.
search [19], [20]. Tolonen and Karjalainen have suggestedrhe method operates iteratively by estimating and removing the
simplified version of the unitary pitch model and applied it tenost prominent FO from the mixture signal. The tgradom-
the multiple-FO estimation of musical sounds [21]. In [22], daant-FO estimatiorrefers to a crucial stage where the FO of
Cheveigné and Kawahara integrated the model with a conctive most prominent sound is estimated in the presence of other
rent vowel identification model of Meddis and Hewitt [23] ancharmonic and noisy sounds. To achieve this, the harmonic fre-
developed an approach where FO estimation is followed by theency relationships of simultaneous spectral components are
cancellation of the detected sound and iterative estimation fmsed to group them to sound sources. An algorithm is proposed
the residual signal. A more straightforward version of this itewhich is able to handle inharmonic sounds. These are sounds
ative approach was earlier proposed by de Cheveigné in [24For which the frequencies of the overtone partials (harmonics)
The periodicity transform method proposed by Setharese notin exact integer ratios. In a subsequent stage, the spec-
and Staley in [25] bears a close resemblance to that of wlem of the detected sound is estimated and subtracted from the
Cheveigne in [24], although the former is purely mathematmixture. This stage utilizes the spectral smoothness principle,
cally formulated. A more dynamic approach to residue-drivemhich refers to the expectation that the spectral envelopes of
processing has been taken by Nakatani and Okuno [2fdal sounds tend to be slowly varying as a function of frequency.
Their system was designed to segregate continuous streammasther words, the amplitude of a harmonic partial is usually
harmonic sounds, such as the voiced sections of two or thidese to the amplitudes of the nearby partials of the same sound.
simultaneous speakers. Multiple agents were deployed to trdt¢ee estimation and subtraction steps are then repeated for the
harmonic sounds in stereophonic input signals, the sounds weagsidual signal. A review and discussion of the earlier iterative
subtracted from the input signal, and the residual was usedajgproaches to multiple-F0 estimation can be found in [22], [24].
update the parameters of each sound and to create new agesyghoacoustic evidence in favor of the iterative approach can
when new sounds were detected. be found in [1, p. 240, 244], [5].
There are two basic problems that a multiple-FO estimator hasThe motivation for this work is in practical engineering appli-
to solve in addition to those that are confronted with in single-Féations, although psychoacoustics is seen as an essential base
estimation. First, the calculated likelihoods (or weights) of difef the analysis principles. The proposed algorithm is able to
ferent FO candidates must not be too much affected by the pressolve at least a couple of the most prominent FOs, even in
ence of other, co-occurring sounds. To achieve this, multiple-F@h polyphonies. Reliable estimation can be carried outin cases
algorithms typically decompose incoming signals into smallevhere the signal has been corrupted by high levels of additive
elements which are then selectively used to calculate the weigbise or where wide frequency bands are missing. Non-ideal
for each candidate. For example, some methods trace sinusosainds that exhibitinharmonicities can be handled. The applica-
components and then group them into sound sources accordings thus facilitated comprise transcription tools for musicians,
to their individual attributes, such as harmonic relationships transmission and storage of music in a compact form, and new
synchronous changes in the components [7], [13], [16], [26liays of searching musical information.
[27]. Other algorithms apply comb filtering in the time domain The paper is organized as follows. Section Il will describe
to select only the harmonically related components [22], [24he different elements of the algorithm presented in Fig. 1.
[25]. Several recent systems have employed auditory mod@lsese include preprocessing, the harmonicity principle used,
which break an incoming sound into subchannel signals and pgre smoothing of detected sounds, and estimation of the number
form periodicity analysis withing channels [18], [20], [22].  of concurrent sounds. Section Il will describe experimental
Inthe second place, even when a correct FO has been deteatesljlts and will compare these with the performance of two
the next-highest weights are often assigned to half or twice efference methods and human listeners. Finally, Section IV will
this correct FO value. Thus, the effect of any detected FO mgsimmarize the main conclusions and will discuss future work.
be cancelled from harmonics and subharmonics before deciding
the next most likely FO. Some algorithms perform this by manip-
ulating the calculated FO weights directly [21]. Other methods
estimate the spectrum of each detected sound and then subtra€his section will look at all the necessary elements required
it from the mixture in an iterative fashion [24], [25], or proces$or the multiple-FO estimation task and as illustrated in Fig. 1. To
as a joint estimation and cancellation pursuit [24], [26]. Thieegin, Section II-A will describe the preprocessing stage which
latter scheme is similar to the analysis-by-synthesis technigugsecessary to achieve robustness in additive noise and to handle
in parametric coding, where for example sinusoidal componesisunds with uneven spectral shapes. Next, the main principle be-
are detected, modeled, and subtracted from the input in ordehtod using harmonic relationships is discussed in Section 11-B.
minimize the residual signal [28]. Section II-C will describe the smoothing algorithm which is
The aim of this paper is to propose a multiple-FO analysieeeded to subtract each detected sound from the mixture so that
method that operates at the level of a single time frame andti& remaining sounds are not corrupted. The last subsection will
applicable for sound sources of diverse kinds. Automatic trapropose a mechanism to control the stopping of the iterative es-
scription of music is seen as an important application area, itimmation and cancellation process.

Il. PROPOSEDMULTIPLE-FO ESTIMATION METHOD
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The frequency indiceg, and k; correspond to frequencies
50 Hz and 6.0 kHz, respectively, and are determined by the
frequency range utilized by the multiple-FO estimator. The
exact formula for calculating is not as critical as the general

Estimate number o
concurrent sounds
and iterate

acoustic
mixture signal

Nobe Predomi- si’; eoctthr;l Remove idea represented by (2). The use of (2) and (3) is based on two
nant-FO Jordetec te%i detected reasonable assumptions. First, the amplitudes of the important
estimation J sound from | fequency partials ifl (k)S(k) are above the additive noise
soun the mixture

N(k). Secondly, it is assumed that a majority of the frequency

components betweeh, and k; correspond to the additive

store FO noise floor, not to the spectral peaksi@fk)S(k). In this case,

(1/g) scales the input spectrum so that the level of additive

noise N (k) stays close to unity and the spectral peaks of the

vibrating systemH (k)S(k) are noticeably above unity. It

follows that in (2), additive noise goes through a linear-like
All calculations in the proposed system take place in the frﬁ'[agnitude_warping transform, whereas Spectra| peaks go

quency domain. A discrete Fourier transform is calculated fgirough a logarithmic-like transform.

a Hamming-WindOWGd frame of an acoustic input Signal, Sam-The response{{(k) is efﬁcienﬂy flattened by the |Oga-

pled at 44.1 kHz rate and quantized to 16-bit precision. Framghmic-like transform, since subsequent processing takes place

lengths of 93 ms and 190 ms were used in simulations. Thgge&he warped magnitude scale. Additive noise is suppressed

may seem long from the speech processing point of view, iy} applying a specific spectral subtraction k) [34]. A

are actually not very |Ong for musical chord identification taSk$nOV|ng averagé\]( ) OVErY(k) is calculated on a |Ogar|thm|c

In such tasks, the pitch range is wide, mixtures of low soungiequency scale and then linearly subtracted fid(i). More

produce very dense sets of frequency partials, and FO precisig@actly, local averages were calculated at 2/3-octave bands

of 3% is required to distinguish adjacent notes (see Appendixhile constraining the minimum bandwidth to 100 Hz at the
Preprocessing the spectrum before the actual multiple-ffjvest bands. The same bandwidths are used in the subsequent

analysis is an important factor in the performance of the systep calculations and are motivated by the frequency resolution

It provides robustness in additive noise and ensures that sougfithe human auditory system and by practical experiments

with varying spectral shapes can be handled. The signal moglgth generated mixtures of musical sounds and noise. The use

assumed by the proposed system is of the logarithmic frequency scale was clearly advantageous

_ over a linear scale since it balances the amount of spectral fine
X(k) = H(k)S(k) + N (k) @ structure that is used with different FOs.

where X (k) is the discrete power spectrum of an incoming The estimated spectral averag&k) is linearly subtracted

acoustic signal and (k) is the power spectrum of a vibratingfrom Y (k) and resulting negative values are constrained to zero

system whose fundamental frequency should be measured. The R

factor H (k) represents the frequency response of the operating Z(k) = max {07 Y (k) — N(k)} . 4)

environment and the body of a musical instrument which fil-

ters the signal of the vibrating source. Elimination/étk) is The preprocessed spectrufitk) is passed to the multiple-FO

often referred to as pre-whitening. The ten(k) represents estimator.

the power spectrum of additive noise. In music signals, the ad-

ditive interference is mainly due to the transient-like sounds Bt Harmonicity Principle

drums and percussive instruments. In this section, the “Predominant-FO estimation” part of the
In principle, additive noise can be suppressed by performiagyorithm is described. A process is proposed which organizes
spectral subtraction in the power spectral domain. The effegixture spectra by utilizing the harmonic relationships between
of H(k), in turn, can be suppressed by highpass lifteritiee  frequency components, without assuming ideal harmonicity.
log-magnitude spectrum. Confirming the reports of earlier au- Several fundamentally different approaches to FO estima-
thors, however, two noise-reduction SyStemS in a cascade dﬁ@ﬁ have been proposed_ One Category of a|gorithms measures
not produce appropriate results [30]. Rather, successful noj&iodicity in the time-domain signal. These methods are typ-
suppression is achieved by applying magnitude warping whiglly based on calculating the time-domain autocorrelation
equalizes? (k) while allowing the additive noise to be linearlyfunction or the cepstrum representation [32], [33]. As shown
subtracted from the result. The power specti¥iiit) is magni- in [34], this is theoretically equivalent to matching a pattern

Fig. 1. Overview of the proposed multiple-FO estimation method.

A. Preprocessing

tude-warped as of frequency partials atarmonic position®f the sound spec-
1 trum. An explicit way of building upon this idea is to perform
Y(k)=1In {1 + EX("%‘)} (2)  harmonic pattern matching in the frequency domain [35], [36].
where Another category of algorithms measures periodicity in the
1 y RE frequency-domain, observing FO from tivgervals between
g=|—""— Z X()= (3) the frequency partials of a sound. The spectrum autocorre-
) ki—ko+1 I=ko

lation method and its variants have been successfully used
1The term “liftering” is defined [29]. in several FO estimators [37], [38]. An interesting difference



KLAPURI: MULTIPLE FUNDAMENTAL FREQUENCY ESTIMATION BASED ON HARMONICITY AND SPECTRAL SMOOTHNESS 807

.

between the time-domain and frequency-domain periodicity
analysis methods is that the former methods are prone to error _ 11
in FO halving and the latter to errors in FO doubling. This
is because the time-domain signal is periodic at half the FC
rate (twice the fundamental time delay) and the spectrum is
periodic at double the FO rate. A third, psychoacoustically 0
motivated group of algorithms measures geziodicity of the
amplitude envelopef a time-domain signal within several
frequency channels [20], [21], [39]. Fig.2. Magnitude responses of the 18 frequency bands, at which the bandwise
A major shortcoming of many of the earlier proposef0 estimation takes place.
methods is that they do not handle inharmonic sounds appro-
priately. In the case of real nonideal physical vibrators, the In each band, the algorithm calculates a weight veEidr.)
harmonic partials are often not in exact integral ratios. Facross frequency indices. Note, indexorresponds to the fun-
example for stretched strings the frequerfgyof an overtone damental frequency’ = (n/K)fs whereK is the number of
partial h obeys samples in the time-domain analysis frame gnds the sam-
pling rate. The resolution of the weight vector is the same as
fo=hFy/1+(h?-1)B (5) that of the preprocessed spectrditk:). The bandwise weights

. . . Ly(n) are calculated by finding a series of eactt frequency
Where_F is the fundamenta_l frequency andl is the |nhar-_ components at baridthat maximizes the sum
monicity factor [40]. Equation (5) means that the partials

Gp(k)

200 400 800 1600 3200 6000
Frequency (Hz)

50 100

cannot be assumed to be found at harmonic spectrum positions, J(mn)—1
but are gradually shifted upwards in the spectrum. This is  Ly(n) = max c(m,n) > Zy(ky +m+nj)p (7)
not of great concern in speech processing, but is important me j=0
when analyzing musical sounds at a wide frequency bandhere
[41]. In the rest of this paper, capital lettEris used to denote J(m,n) = ’V(KB - m)l (®)
fundamental frequency, and the lower case lefteo denote ’ n
simply frequency. 0.75
The proposed predominant-FO estimation method works by c(m,n) = [W] + 0.25. 9)

calculating independent FO estimates at separate frequency
bands and then combining the results to yield a global estimdiere.M = {0,1,....k — 1} is the offset of the series of par-
This helps to solve several difficulties, one of which is inhatials in the sum,J(m, n) is the number of partials in the sum,
monicity. According to (5), the higher harmonics may deviat@ndc(m, n) is a normalization factor. A normalization factor is
from their expected spectral positions, and even the intervigeded becausé varies for different values of: andn. The
between them are not constant. However, we can assume f@f1 c(m, n) was determined by training with isolated musical
spectral intervals to be piecewise constant at narrow-enoufftrument samples in varying noise conditions. The offset
frequency bands. Thus, we utilize spectral intervals in a twW® varied to find the maximum of (7), which is then stored in
step process which 1) calculates the weights of differefw (n). Different offsets have to be tested because the series of
FOs at separate frequency bands and 2) combines the redijgger harmonic partials may have shifted due to inharmonicity.
in a manner that takes inharmonicity into account. Another The upper panel in Fig. 3 illustrates the calculations for a
advantage of bandwise processing is that it provides robustnéi§glle harmonic sound at the bahd= 12 between 1100 Hz
and flexibility in the case of badly corrupted signals where onfnd 1700 Hz. The arrows indicate the series of frequency com-
a fragment of the whole frequency range can be used [41]. TR@nents which maximizes;(n) for the true FO.
two steps are now described. The values of the offset are restricted to physically realistic

1) Bandwise FO EstimationThe preprocessed Spectrun{nharmonicities, a subset &ff. The exact limit is not critical,
Z(k) is analyzed at 18 bands that distribute approximately lo§ierefore (5) with a constagt= 0.01 inharmonicity factor can
arithmically between 50 Hz and 6 kHz, as illustrated in Fig. 2€ used to determine the maximum allowable offset from the
Each bandh comprises a 2/3-octave region of the spectrurifieal harmonic positions. The harmonic indexn (5) can be
constraining, however, the minimum bandwidth to 100 HAPProximated by, ~ (k, + K, — 1)/n. It follows that the fun-
Band b is subject to weighting with a triangular frequencylamental partial = 1 must be exactly in the harmonic spectral
response; (k), shown in Fig. 2. The overlap between adjace0sition, whereas the whole skf has to be considered for the
bands is 50%, making the overall response sum to unity at highest partials. In other words, the algorithm combines the use

except the lowest bands. Response at leisdienoted by of spectral positions for the lowest harmonic partials and the use
of spectral intervals for the higher partials. For a frequency band
Zy(k) = Gy(k)Z (k). (6) which is assumed to contain only the first harmonic partial of a

sound with fundamental frequency corresponding to index

Non-zero frequency components &§(k) are defined for fre- jnharmonicity is not allowed. Heré is set to 1, and (7) reduces
quency indicesk € [k, k, + Ky — 1] wherek; is the lowest o the special case

frequency component at bahdand K, is the number of com-
ponents at the band. Ly(n) = Zy(n). (10)
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Fig. 3. Calculation of the bandwise FO weight vectors according to (7).

It follows that in this case the weights, (n) are equal tdZ;(n)
between the frequency limits of the band. The algorithm is de-
tailed in Table I.

The lower panel in Fig. 3 shows the entire weight vector
Lq5(n) calculated at banbl = 12 for the same signal as in the
upper panel. As can be seen, the preprocessed speZip(m)
appears as such at the corresponding banthefn). A twice
narrower copy 0¥, (n) is found an octave below, since the FOs
in that range have exactly one harmonic partial at the band (the
second partial). Yet lower FO candidates have a series of higher
overtones at the band and inharmonicity is allowed. This is the
case for the true FO (70 Hz) which has been assigned the highest
weight.

An important property of the presented calculations is that
only the selected frequency samples contribute to the weight
Ly(n), not the overall spectrum. The other co-occurring sounds
affect the weight only to the extent that their partials overlap
those of the sound being estimated (a solution for overlapping
partials is given in Section 1I-C). Harmonic selection provides
robustness in sound mixtures as long as we do not rely on the
detection of single partials, as is the case here. Harmonic selec-
tion was originally proposed by Parsons in [27] and is used in
most multiple-FO0 algorithms, as described in Section I.

2) Integration of Weights Across Subbandsig. 4 shows
the calculated.,(n) weight vectors at different bands for two
isolated piano tones where the weight vectors are arranged
in increasing band center frequency order. As expected, the

TABLE |

ALGORITHM FOR CALCULATING THE WEIGHTS L, (n) FOR DIFFERENT FOSAT

BAND b. SEE TEXT FOR THE DEFINITION OF SYMBOLS

# Implementation of the model in Eq. (7)
ng « floor[(F,,;,/ K]
ny—Ky,—1
ly—ky+Ky—1
for n < from njto n; do
mg = round[ceil(k,/n)n] -k,

!
3 -‘}Tﬂ[jx +0.01[(/,/n)? = 11-1]

my < my+9d

if my > my+n—1 then
my« 0
m;«n—1

Ly(n) <0

for m < from mg to m| do
J « floor[(Ky—m~—1)/n]+1
L,,, < (0.75/J+0.25) x

3 0 Zolky+ m+ mj)

if L > L,(n) then

now
Lb(n) < Lnow

end
end
# Range of n that have exactly one harmonic partial
# at frequency band b (inharmonicity not allowed)
he1
ko < floor[(k, + Kp)/(h+1)]
if ky<k, then kj < k,
ky e ky+Ky—1
while k) <k, do

for k « from k;to k; do

n < round(k/h)
if L,(n) <Z,(k) then
Ly(n) < Z,(k)

end

he—h+1

# harmonic h+1 is above the band

ko < ceil[(ky, + Kp)h/(h+1)]

if ky <k, then ky <k,

# harmonic h—1 is below the band

ky « floor[(k,— 1)h/(h—1)]

if k) >k, + K, then k| <k, + K,
end

maximum weight is usually assigned to the true FO, providesbrding to a curve determined by (5). A search over possible
that there is a harmonic partial at that band. The inharmonicimglues ofg3(n) is conducted for each, and the highesL(n)
phenomenon appears in Figs. 4(a) and 4(b) as a rising treaml the corresponding(n) are stored in the output. Squaring

in the fundamental frequency. the bandwise FO weights prior to summing was found to pro-
The bandwise FO weights are combined to yield a global Mde robustness in the presence of strong interference where the
estimate. A straightforward summation across the weight vauitch may be perceptible only at a limited frequency range.
tors does not accumulate them appropriately since the FO estiThe global FO weight€.(n) and inharmonicity factorg(n)
mates at different bands may not match for inharmonic sounds, not need to be calculated for all fundamental frequency in-
as can be seen from Fig. 4. To overcome this, the inharmoniaiticesn. Instead, only a set of fundamental frequency indices
factor is estimated and taken into account. Two different inhafry, no,...,ng} is collected from the bandwise weight vec-
monicity models were implemented, the one given in (5) aridrs L (n). This is possible, and advantageous since if a sound
another mentioned in [40, p. 363]. In simulations, the perfois perceptible at all, it generally has a high weight in at least one
mance difference between the two was negligible. The modelafthe bands. Selecting a couple of maxima from each band pre-
(5) was adopted. serves the correct fundamental frequency among the candidates.
Global weightd.(n) are obtained by summing squared band- The maximum global weighL(n) can be used as such to
wise weightsL;(n) that are selected from different bands acdetermine the true FO. However, an even more robust selec-
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! partials is estimated and linearly subtracted from the mixture

:ml S spectrum.
E 2720 P

I Initial estimates for the frequency and amplitude of each si-

SN T nusoidal partial of a sound are produced by the predominant-FO
"% 1079 A A detection algorithm. Efficient techniques for estimating more
_/\—M\—'—'\f_v/\—/\_—/‘ - .

2 seo_Mj\__/Hﬁ,\_,\__ﬁ_/\_,\_‘ precise values have been proposed e.g. in [42]. A method
S M widely adopted is to apply Hamming windowing and zero
§~ e R S S padding in the time domain, to calculate Fourier spectrum,
& 270—— VNN and to use quadratic interpolation of the spectrum around the
| " . . . .
Q70— partial. The second problem, estimating the spectrum in the
5 87——’“’3 vicinity of the partial is equivalent to translating the magnitude

. . . s s : ; spectrum of the original analysis window at the frequency
o %0 Fu:g')a mg)mligg uf;?c ?g?z) 350 400 of the sinusoidal partial. For Hamming window without zero
(a) quency padding, it was found to be sufficient to perform the subtraction

for five adjacent frequency bins.

4317% 2) The Problem of Coinciding Frequency Partial®©ne

2720 e — A issue that is addressed in the algorithm is the problem of

msﬁf‘—’f coinciding frequency partials. To illustrate this problem,
A A simulations were run using the iterative procedure on randomly

1079 generated FO mixtures. Fig. 5 shows the errors as a function of

A\
680 : the musical intervals that occur in the erroneously transcribed
428 —— NN ’.’; sound mixtures (see Appendix). In most cases, the iterative

I

1

T

approach works rather reliably. However, an important obser-

Center frequency of bands (Hz)

270 vation can be made when the distribution of the errors in Fig. 5
170 is analyzed. The error rate is strongly correlated with certain FO
87 relations. The conclusion to be noted is that a straightforward

0 100 200 300 400 500 600 700 800 estimation and subtraction approz_;tch is Iikely to fail in cases
Fundamental frequency (Hz) where the fundamental frequencies of simultaneous sounds
(b) have simple rational number relations, also calletmonic
relations. These are indicated over the corresponding bars in
Fig. 4. Bandwise-calculated FO weighls(n) for two piano tones, Figure Fig. 5.

(a) with FO 65 Hz and Figure (b) with FO 470 Hz. The vectors are displaced T . .

vertically for clarity. The true pitches of the tones are indicated with dashed C0|nC|d|ng fr_equency _partlals from different S_OUhdS_ C_an

vertical lines. cause the algorithm to fail since many of the partials coincide
in frequency. When the sound detected first is removed, the

coinciding harmonics of remaining sounds are corrupted in

:'r?n amotngl the camdldatesf tchanFtE)e rtr;]a?er:] by ftl;]rthﬁ.r Lnsp;eclt?g subtraction procedure. After several iterations, a remaining
€ spectral smoothness of the oS that have Ihe ighest glq oelljnd can become too corrupted to be correctly analyzed in the

weights. This is the reason why a smoothing module is used.itlgrations that follow.

Fig. 1 before storing the FO. This module will be described in Wh . idal ials with litud q q
detail in Section Ill. For the sake of discussion in Section II-C en two sinusoidal partials with amplituces anda; an

one can assume that the maximum global ségre determines phase differencé coincide in frequency, the amplitude of the
the predominant FO. resulting sinusoid can be calculated as

_ [N
C. Spectral Smoothness Principle as = o1+ aze2]. (11)

1) Iterative Estimation and Separationthe presented If the two amplitudes are roughly equivalent, the partials may
method is capable of making robust predominant-FO detectiagither amplify or cancel each other, depending @nHowever,
in polyphonic signals. Moreover, the inharmonicity factor anid one of the amplitudes is significantly greater than the other,
precise frequencies of each harmonic partial of the detectslis usually the case, approaches the maximum of the two.
sound are produced. A natural strategy for extending theAssuming ideal harmonicity, it is straightforward to prove
presented algorithm to multiple-FO estimation is to remove thleat the harmonic partials of two sounds coincide if and only
partials of the detected sound from the mixture and to apply tliehe fundamental frequencies of the two sounds are in rational
predominant-FO algorithm iteratively to the residual spectruinumber relations. Moreover, if the harmonic indices of the co-

Detected sounds are separated in the frequency domain. Baciding partials are andg, then every'® partial of the first
sinusoidal partial of a sound is removed from the mixture spessund coincides with every'" partial of the other sound. An
trum in two stages. First, good estimates of the frequency aimgbortant principle in Western music is to pay attention to the
amplitude of the partials must be obtained. It is assumed thmtich relationships of simultaneously played notes. Simple har-
these parameters remain constant in the analysis frame. Secomzhic relationships are favored over dissonant ones in order to
using the found parameters, the spectrum in the vicinity of tineake the sounds blend better. Because harmonic relationships
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Fig. 5. Distribution of the FO estimation errors as a function of the musical \l\l 30
intervals that occur in the erroneously transcribed sound mixtures. S
S
are so common in music, these “worst cases” must be handle §o 10
well in general. = A
To solve this problem, the spectra of the detected .sounds mus 00 1000 2000 3000 2000 5000 5000
be smoothed before subtracting them from the mixture. Con- Frequency (Hz)
sider the preprocessed spectriitk) of a two-sound mixture ()

in Fig. 6(a). In the figure, the harmonic partials of the higher-
pitched sound coincide with every third harmonic of the lower- ) o
pitched Sounthigher _ 3Flawer)- As predicted by (11), the Fig. 6. lllustration of the spectral smoothness principle. (a) Preprocessed

R . ) spectrumZ (k) containing two sounds with FOs in the relation 1:3. (b) Two
coinciding partials randomly cancel or amplify each other at th@ferent smoothing operations have been used to estimate the spectral envelope

low frequencies, whereas at the higher frequencies the summedripe lower-pitched sound. The results are indicated with thin and thick
amplitudes approach the maximum of the two, i.e., the spectP§fzontal curves.
envelope of the higher sound.

When the spectrum of the lower-pitched sound is smoothgdrtial, as was previously explained following (11) in this sec-
(the thin slowly decreasing horizontal curve in Fig. 6(b)), the caion. The algorithm applies a multistage filter with the following
inciding partials at the higher frequencies rise above the smoateps [43]. First, the indicgs. ., h—1, h, h+1, h+2, ...} of the
spectrum and thus remain in the residual after subtraction.Harmonic partials around harmorficare collected from an oc-
particular, this solves a very common case where the dense have-wide window. Next, the surrounding partials are classified
monic series of a lower-pitched sound matches the few partifiso groups, where all the harmonics that share a common di-
of a higher-pitched sound. Detecting the higher-pitched sougidor are put in the same group, starting from the smallest prime
firstis less common and in that case, only a minority of the haflactors. Third, weighted mean around harmahis calculated
monics of the lower-pitched sound are deleted. inside groups in the manner described above. In the last step,

It should be noted that simply smoothing the amplitude envihe estimates of different groups are averaged, weighting each
lope (the thin curve in Fig. 6(b)) of a sound before subtractingroup according to its mean distance from harmdnic
it from the mixture does not result in lower error rates. A suc- 3) Recalculation of FO Weights After Smoothinghe de-
cessful smoothing algorithm was found by applying psychogeribed principle of smoothing provides an efficient solution
coustic knowledge. The full motivation for this approach hag another common class of errors. In this class of errors two
been presented in [43] and is beyond the scope of this papefor more fundamental frequencies in specific relationships may

The algorithm first calculates a moving average over the amause the detection of a nonexistent sound, such as the root of a
plitudes of the harmonic partials of a sound. An octave-widausical chord in its absence. For instance, when two harmonic
triangular weighting window is centered at each harmonic pageunds with fundamental frequenci2é and3F are played,
tial », and the weighted meat), of the amplitudes of the par- the spectra of these sounds match every second and every third
tials in the window is calculated. This is the smooth spectruharmonic partial of a nonexisting sound with fundamental fre-
illustrated by a thin horizontal curve in Fig. 6(b). The originauencyF. This frequencyF’ may be erroneously estimated in
amplitude valuez,, is then replaced with the minimum of thethe predominant-FO calculations given the observed partials.
original (ay) anddp,: The problem can be solved by applying smoothing and an

ordered search when selecting among the candidate indjces
ap, — min(ap,dp). (12) calculated by the predominant-F0 algorithm (see the end of Sec-
tion 11-B). First, the candidate; with the highest global weight
These values are illustrated by a thick curve in Fig. 6(bJ.(n;) is taken and its spectrum is smoothed. Then the weight
Performing this straightforward smoothing operation befor& this candidate is recalculated using the smoothed harmonic
subtracting the sound from the mixture reduces the error ratgaplitudes. In the above-described case of a nonexistent sound,
significantly. the irregularity of the spectrum decreases the level of the smooth

A further improvement to the smoothing method can be madpectrum significantly, and the weight remains low. If the recal-

by utilizing the statistical dependency of evei harmonic culated weight drops below the second-highest weight, the next
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candidaten, is processed, and this is continued. The highest re-As long as the value af; stays above a fixed threshold, the
calculated global weight determines the FO. The computatiorsalund detected at iteratians accepted as a valid FO estimate
load of applying smoothing and recalculation to select amoiagd the iteration is continued. In (13) and (14), the SNR-related
the candidates is negligible, since the recalculation procedteems have different roles and thus different signs.
has to consider only one FO and one valuenoih (7).

Ill. RESULTS

D. Estimating the Number of Concurrent Sounds A. Experimental Setup

A mechanism is needed which controls the stopping of the simylations were run to validate the proposed methods. The
iterative FO estimation and sound separation process. This legdsystic database consisted of samples from four different
to the estimation of the number of concurrent sounds, i.e. t§8yrces. The McGill University Master Samples collection [45]
polyphony. The difficulty of the task is comparable to that ofng independent recordings for acoustic guitar were available
finding the FO values themselves. Huron has studied musiciagﬁ’eady during the development phase of the system. In order
ability to identify the number of concurrently sounding voiceg, verify that the results generalize outside these data sets, the
in polyphonic textures [44]. According to his report by foursamples from the University of lowa website [46] and IRCAM
voice polyphonies the test subjects underestimated the nUMBgJdio Online [47] were added to the final evaluation set. There
of voices in more than half of the cases. were altogether 30 different musical instruments, comprising

A statistical-experimental approach was taken to solve theass and reed instruments, strings, flutes, the piano, and the
problem. Random mixtures of one to six concurrent harmonigiitar. These introduce several different sound production
sounds were generated by allotting sounds from McGill Uninechanisms and a variety of spectra. On the average, there
versity Master Samples collection [45]. The mixtures were thefere 1.8 pieces of each of the 30 instruments and 2.5 different
contaminated with pink noise or random drum sounds froplaying styles per instrument. The total number of samples
Roland R-8 mk Il drum machine. Signal-to-noise ratio wagas 2536. These were randomly mixed to generate test cases.
varied between 23 dB and2 dB. The instruments marimba and the vibraphone were excluded

The behavior of the iterative multiple-FO estimation systefigom the data set since their spectrum is quite different from
was investigated using these artificial mixtures with knowghe others and extremely inharmonic. The system admittedly
polyphonies. Based on this investigation it was decided {&nnot handle these sounds reliably.
split the estimation task into two stages. The first stage detectssemirandom sound mixtures were generated according to
if there are any harmonic sounds at all in the input, and thgo different schemesRandom mixturesvere generated by
second estimates the number of concurrent sounds, if the fi§gdt allotting an instrument and then a random note from its
test has indicated that some are present. It was found that {iyle playing range, restricting, however, the pitch over five
best single feature to indicate the presence of harmonic sougdgyves between 65 Hz and 2100 Hz. The desired number of
was the global weighL{,.. of the winning FO candidate atsimultaneous sounds were allotted and then mixed with equal
the first iteration. The best compound feature consistspf. mean-square leveldlusical mixturesvere generated in a sim-
and terms related to the signal-to-noise ratio (SNR) of the inpitidr manner, but favoring different pitch relationships according
signal: to a statistical profile discovered by Krumhansl in classical

Western music [48, p. 68]. In brief, octave relationships are
ki1 ki the most frequent, followed by consonant musical intervals,
Z X(l)] —1In [Z N(pow)(l)] . and the smallest probability of occurrence is given to dissonant
I=ko I=ko (13) intervals. In general, musical mixtures are more difficult to

Here X (k) is the di fthe i ; r?solve (see Section 1I-C2).
ere X (k) is the discrete power spectrum of the input signal »¢stic input was fed to the multiple-FO algorithm that es-
and N,ow) (k) is the power spectrum of the estimated nois

) o F . fimated FOs in a single time frame. Unless otherwise stated, the
obtained by applying inverse transform of (2) 8i(k). Fre- nymper of FOs to extract, i.e., the polyphony, was given along
quency indicesiy andk, are the same as in (3). A signal iyjith the mixture signal. It was found to be more informative to
determined to contain harmonic sounds wheiis greater than frst evaluate the multiple-FO estimator without the polyphony
a fixed threshold. _ . estimator, because these two are separable tasks and because the
Ifan analysis frame has been determined to contain harmopigarence methods do notimplement polyphony estimation. The
sounds, another model |s_useg)to estimate the number of soupggfiguration and parameters of the system were fixed unless
The maximum global weighk .. at iteration: was again the therwise stated. A correct FO estimate was defined to deviate
best single feature for controlling the iteration stopping. HoWass than half a semitone-B%) from the true value, making
ever, the weight values are affected by the SBR... getting it “round” to a correct note on a Western musical scale. Errors
smaller in noise. The bias can be explicitly corrected, resultiRgnajler than this are not significant from the point of view of

vo = 4In[Limaz] + In

in the measure music transcription.
k k
. ! ~ - B. Reference Methods
v = 1.81n (LS;)GI) ~n | S XD+ [ 3 Npow ()] - _ _
Pt = To put the results in perspective, two reference methods were

(14) used as a baseline in simulations. The first methddl, is a
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[ Proposed
TK / 1kHz
TK /520Hz

state-of-the-annonophonid=0 estimator for speech and music .
signals [49]. Naturally, the method can be used as a baseline in 00
single-FO0 analysis only. The algorithm has been designed to be % 15
reliable for individual analysis frames and has been thoroughly 510
tested and compared with other methods in [49]. The original & s} _
implementation by the authors was employed and parameters g : -
were left intact except the “absolute threshold” which was fine- 1 2 3 Pol4 5 6
. yphony

tuned to value 0.15 to improve the performance.

The other reference method, referred toTd§ is a mul- Fig. 7. Error rates for detecting any of the potential FOs in a sound as a function
tiple-FO estimator proposed by Tolonen and Karjalainen i1y the predominant-FO estimation algorithm and the polyphony.
[21]. The implementation was carefully prepared based on the
reference, and the original code by the authors was usedaifmore appropriate error measure isa@e error rate (NER)
the warped linear prediction part of the algorithm. Thoroughetric. The NER is defined as the sum of the FOs in error di-
testing was carried out to verify the implementation. Originafided by the number of FOs in the reference transcription. The
parameters given in [21] were applied. As reported by ttesrors are of three types:
authors, the method cannot handle “spectral pitch,” i.e., FOsa) Substitution errors. These are defined as errors in which a
above 1 kHz. It was further found out here that the method is  given FO is detected but the estimated value differs more
best at detecting FOs in the three-octave range between 65 Hz than+3% from the reference.
and 520 Hz. Thus, in the simulations that follow, the mixtures b) Deletion errors have occurred if the number of detected
given to theTK method were restricted to contain FOs below FOs is smaller than the number of FOs in the reference.
either 520 Hz or 1 kHz. The bound is specified for each case inc) Insertion errors have occurred if the number of detected
the simulation results to follow. FOs exceeds that in the reference.

Substitution and deletion errors together can be counted from
the number of FOs in the reference that are not correctly es-
In the first experiment, different FO estimators are comparetitnated. Insertion errors can be counted from the number of
For this experiment, a predominant-FO estimate (firstly detectegcessive estimates.
FO) was defined to be correct if it matches the correct Fangf Results for multiple-FO estimation in different polyphonies
of the component sounds. That is, only a single match amongadé shown in Fig. 8. Here the number of concurrent sounds to
possible FOs is required in this error measure. The error rate veasract was given for each mixture signal, i.e., the polyphony
calculated as the amount of predominant-FO errors divided tmas known. Thus insertion and deletion errors do not occur.
the number of random sound mixtures (1000), not by the numbRandom and musical sound mixtures were generated according
of reference notes (e.g. 6000 in the six-note mixtures). FO egb-the described schemes, and the estimator was then requested
mation was performed in a single 190 ms time frame 100 nmsfind a given number of FOs in a single 190 ms time frame 100
after the onset of the sounds. Fig. 7 shows the error rates for the after the onset of the sounds.
predominant-FO estimation in different polyphonies. Results areln Fig. 8, the bars represent the overall NER’s as a function of
given for the proposed system and for the two reference systethg polyphony. As can be seen, the NER for random four-sound

For the proposed system, the error rates are generally belpglyphonies is 9.9% on the average. The different shades of
10%, getting close only in six-note polyphonies. Surprisinglgray in each bar indicate the error cumulation in the iteration,
increasing the number of concurrent sounds from one to tworors which occurred in the first iteration at the bottom, and
appears to help lower the error rate of detecting at least oneét®ors of the last iteration at the top. As a general impression,
correctly. However, this is due to the fact that the acoustic dathe system works reliably and exhibits graceful degradation in
base contains a small percentage of irregular sounds for whiohreasing polyphony. Results for musical mixtures are slightly
the simple model in (7) does not work. Among these are eworse than for random mixtures (see Section [I-C2), but the
high flute tones and high plucked string tones. Two-sound migifference is not great. This indicates that the spectral smoothing
tures are more likely to contain at least one clear sound with pdnciple works well in resolving harmonically related pitch
anomalities, which then appears as the predominant FO.  combinations.

The YIN method achieves 4.1% error rate for isolated notes. Analysis of the error cumulation reveals that the errors which
Since the method is not intended for multiple-FO estimation, it@ccurred in the last iteration account for approximately half of
not fair to make comparison for polyphonic signals. Like othehe errors in all polyphonies, and the probability of error in-
single-FO estimators, the algorithm converges to 70% error rateases rapidly in the course of iteration. Besides indicating that
already in three-note mixtures. Th& method is not quite as re- the subtraction process does not work perfectly, the conducted
liable for single-pitch signals, but works robustly in polyphonylistening tests suggest that this is a feature of the problem it-
If the method is given FOs only below 520 Hz, the predomself, rather than only a symptom of the algorithms used. In most
nant-FO detection accuracy comes close to the proposed systaixtures, there is a sound or two that are very difficult to per-
in higher polyphonies. This is partly due to the relatively highereive because their spectrum is virtually hidden under the other
random guess rate. sounds.

In the second experiment, the performance of multiple-FO es-For the reference methdiK, note error rates for mixtures
timation is explored in more detail. For multiple-F0O estimatiorranging from one to six sounds were 22%, 31%, 39%, 45%,

C. Experimental Results
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Random mixtures Musical mixtures TABLE I
ERROR RATES FORDIFFERENT SYSTEM CONFIGURATIONS WHEN THE
POLYPHONY OF THE SIGNALS WAS KNOWN
20 201
i5 " Polyphony
3 107 & ' System configuration
S S ystemn configin . y
] g 101
Lﬁ 10 § Complete system 1.8% 9.9 %
e 5 Inharmonicity not allowed 6.2 % 17 %
|| ] No smoothing 22% 20%
1 2 3 4 5 6 1 2 3 4 5 6
Polyphony Polyphony

: . I _ Avoid deletions: v=0.65 Avoid insertions: vi=1.1
Fig. 8. Note error rates for multiple-FO estimation using the proposed :

algorithm when the polyphony was known. Bars represent the overall errol
rates, and the different shades of gray the error cumulation in iteration.

I substitutions B subshtuhons :

deletions

35 insertions |
49%, and 53%, respectively, when FOs were resticted to rang\, |

65 Hz—1 kHz. For the three-octave range between 65 Hz and 5 25w
Hz, the corresponding error rates were 7.5%, 17%, 26%, 3 40/2 %g S
38%, and 43%. Given the complexity of the problem, eventhesi 10
error rates are rather low. g
Table Il gives the error rates for different system configura- 1 2 3 4 5 6 1 2 3 4 5 6
tions. Different processing elements were disabled one-by-on Polyphony Polyphony
in order to evaluate their importance. In each case, the system
was kept otherwise fixed. In the first test, the mechanisms thatlg 9. Error rates for the two different polyphony estimations strategies.
accommodate inharmonicity were disabled. One mechanism is
in bandwise FO-weight calculations, and in this case the offsettraneous FOs appear in monophonic signals. This is likely
m in (7) was constrained to a value which corresponds to &m be characteristic of the problem itself (see Huron's report
ideal harmonicity. Another mechanism is in the integratio#4] mentioned in Section 1I-D). One or two sounds in rich
phase. Here the inharmonicity factor was constrained to zepmlyphonies are usually very difficult to distinguish.
leading to a straightforward summing across squared weighfTable Il shows the influence of shortening the analysis frame.
vectors. The resulting performance degradation is mostly dlike significant difference between 190 ms and 93 ms frame
to the bandwise calculations. sizes is partly caused by the fact that the applied technique
In the second test, the spectral smoothing algorithm wass sometimes not able to resolve the FO with the required
switched between the one presented in Section 1I-C2 amB% accuracy. Also, irregularities in the sounds themselves,
a version which leaves the harmonic series intact. Tlsech as vibrato, are more difficult to handle in short frames.
smoothing operation made a significant improvement to muttowever, when the time frame was shortened from 190 ms
tiple-FO estimation accuracy in all polyphonies, except for the 93 ms, the error rate of the reference meth&dincreased
single-note case where it did not have a noticeable effect on tivdy by approximately 5% for both 1000 Hz and 520 Hz
performance. FO limits and in all polyphonies. Thus, the error ratesTéf
In all the results presented above, the polyphony of the sigere essentially the same as those presented around Fig. 8.
nals was known. Fig. 9 shows the statistical error rate of thghile the performance is still clearly worse than that of the
overall multiple-FO estimation system when the polyphony @roposed method (polyphony was known), an obvious drawback
estimated in the analysis frame, as described in Section II-D. Ré-the proposed method is that its accuracy depends on the
sults are shown for two different polyphony estimation thresltength of the analysis frame. A basic reason for this is that
olds (i.e., thresholds far; in (14) which were 0.65 and 1.1 for the linear frequency resolution of spectral methods does not
the left and right panels, respectively). Depending on the apidffice at the low end, whereas the frequency resolution of
cation, either overestimating or underestimating the numberaiftocorrelation-based methods is proportional to the inverse of
concurrent sounds may be more harmful. In a music transcripequency, being closer to the logarithmic frequency resolution
tion system, for example, extraneous notes in the output are vefynusical scales and human hearing. Despite these differences,
disturbing. However, if the frame-level FO estimates are furthegliable multiple-FO estimation in general seems to require
processed at a higher level, it is usually advantageous to prodiaeger time frames than single-FO estimation.
too many rather than too few note candidates. Fig. 10 shows the NER’s in different types and levels of
In general, the proposed polyphony estimation methaudiditive noise when the polyphony was known. Pink noise was
operates robustly. However, when the estimation thresholdgienerated in the band between 50 Hz and 10 kHz. Percussion
tuned to avoid extraneous detections in monophonic signdfsstrument interference was generated by randomizing drum
the polyphony is underestimated in higher polyphonies. On teamples from a Roland R-8 mk Il drum machine. The test set
other hand, when underestimations are avoided, many of twmprised 33 bass drum, 41 snare, 17 hi-hat, and 10 cymbal

[ insertions
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TABLE Il 100
ERRORRATES FORDIFFERENTANALYSIS FRAME LENGTHS
80F * — all 10 subjects
Actual polyphony 0 — two weakest
Pol.yph(?ny Fr'flme il S 60 X — two most skilled
estimation size 1 2 3 4 5 6 ;, bars — proposed
Polyphony 190ms 1.8 39 63 99 14 18 O 40 algorithm
known  93ms 42 87 16 22 29 34 "
Estimate,avoid 190ms 11 14 16 18 22 32
deletions  93ms 14 19 23 30 38 46 0
2m 2h 2I 3m 3h 31 4m 4h 5m
Stimulus category
Pink noise Drum sounds
40 Fig. 11. Chord error rates of the human listeners (curves) and of the proposed
35 B SNRee | o o[ 25/ I8 SNR | e algorithm (bars) for different stimulus categories. The lowest curve represents
B 1048 g il Bl 1048 the two most skilled subjects, the middle curve the average of all subjects, and
Vigmse | . 20\ 508 the highest curve the two clearly weakest subjects. The labels of the simulus
:\o\ ® =1 0dB categories consist of a number which signifies the polyphony, and of a letter
E’ — ; 15/= which tells the pitch range used.
= 2 0
5l Atotal of ten subjects participated in the test. All of them were
i1 1 1 1 15 E E B I trained musicians in the sense of having taken several years of
1 23 4 5 8§ 0 1 2 3 4 5 ¢ ear training in music. Seven subjects were students of musi-
Polyphony Polyphony cology at university level. Two were more advanced musicians,

possessing absolute pitch and exceptional pitch identification

Fig. 10. Error rates in additive pink noise (left panel) and with interferingbilities. One subject was an amateur musician of similar mu-

percussive sounds (right panel). For both noise types, error rates for a cl o
signal and for noisy signals with SNR’s 10 dB, 5 dB, and O dB are gives?gal ability as the seven StUdents_" .
Polyphony was known. Fig. 11 shows the results of the listening test. Chord error rates

(CER) are plotted for different stimulus categories. CER is the

sounds. The signal-to-noise ratio was adjusted within the anBfrcentage of sound mixtures where one or more pitch identi-
ysis frame, and the ratio was defined between the noise and figation errors occurred. The labels of the categories consist of
sumof the harmonic sounds. Thus, the SNR from the point & number which signifies the polyphony, and of a letter which
view of individual sounds is much worse in higher polyphonie&€lls the pitch range used. Letter “m” refers to the middle, “h” to

A 190 ms frame was applied. the high, and “I" to the low register. Performance curves are av-
eraged over three different groups. The lowest curve represents
D. Comparison With Human Performance the two most skilled subjects, the middle curve the average of all

Listening tests were conducted to measure the human pitPI€Cts, and the highest curve the two clearly weakest subjects.
identification ability, particularly the ability of trained musi-. The CER's cannot be directly compared to the NER's given

cians to transcribe polyphonic sound mixtures. Detailed andi-F19- 8. The CER metric is more demanding, accepting only

ysis of the results is beyond the scope of this article. Onlysé)und mixtures where all pitches are correctly identified. It had

summary of the main findings can be reviewed here to be adopted to unambiguously process the musicians’ answers,
Test stimuli consisted of computer-generated mixtures of ¥Nch V\;]ere g:;/en ?S pitch mtervalﬁ. imull and perf
multaneously onsetting sounds that were reproduced using sa -or the sa € of comparison, the stimuli and performance
pled Steinway grand piano sounds from the McGill Universit riteriaused in the. listening test were used t.o evaluate the
Master Samples collection [45]. The number of co-occurri oposed computational model._ Five h“’?dreq mstance_s were
sounds varied from two to five. The interval between the high ?nerated from each category included in Fig. 11, using the

and the lowest pitch in each individual mixture was never wid§AMe software that randomized samples for the listening test.

than 16 semitones in order to make the task feasible for the suf€Se were fed to the described multiple-FO system. The CER

jects that did not have “absolute pitch”, i.e., the rare ability dJpetric was used as a performance measure.

being able to name the pitch of a sound without a referen,ceThe results are illustrated with bars in Fig. 11. As a general

tone. Mixtures were generated from three pitch ranges (i.e., r pression, only the two most skilled subjects perform better

isters): low (33 Hz—130 Hz), middle (130 Hz-520 Hz), and hig an the qomputational model. Howeyer, perfgrmance diffgr-
(520 Hz—2100 Hz). In total, the test comprised 200 stimuli. ences in high and low registers are quite revealing. The devised

The task was to write down the musical intervals, i.e., pitch ré‘lgor'thm is able to resolve combinations of low sounds that

lations, of the presented sound mixtures. Absolute pitch valu@s beyond the ability of h“maﬂ Iisteners. This seems to be due
were not asked for and the number of sounds in each mixtL'iPethe good frequency resolution applied. On the other hand,

was given. Thus, the test resembles the musical interval an ) L . N
he aim of ear training in music is to develop the faculty of discriminating

Ch‘?ffj id_emiﬁcation tests Fhat are a part of the basic mUSi%Lnds, recognizing musical intervals, and playing music by ear, i.e., without
training in Western countries. the aid of written music.
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human listeners perform relatively well in the high register. This
is likely to be due to an efficient use of the temporal features,
onset asynchrony and different decay rates, of high piano tones.
These were not available in the single time frame given to the
multiple-FO algorithm.

IV. CONCLUSIONS

The paper shows that multiple-FO estimation can be per-
formed reasonably well using only spectral cues, harmonicity
and spectral smoothness, without the need for additional
long-term temporal features. For a variety of musical sounds,
a prior knowledge of the type of sound sources involved is
not necessary, although adaptation of internal source (e.g.
instrument) models would presumably further enhance the
performance.
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TABLE IV
SOME BASIC MUSICAL INTERVALS

Interval name (sen?iltzoenes) FO relation
octave 12 2:1
perfect fifth 7 3:2
perfect fourth 5 4:3
major third 4 5:4
minor third 3 6:5
major second 2 9:8

APPENDIX

The primary problem in multiple-FO estimation appears to Western music typically usesveell-temperednusical scale.
be in associating partials correctly with their individual sourceBhat is, the notes are arranged on a logarithmic scale where the
of production. The harmonicity principle must be applied ifindamental frequenckj, of a notek is £, = 440 x 2(k/12) Hy,
a manner that is flexible enough to accommodate a realisticThe notes on a standard piano keyboard range frem—48
amount of inharmonicity in sound production, and yet cor#p tok = 39. The termsemitoneefers to the interval between
straining enough to prevent erroneous groupings. Contrastag adjacent notes and is used to measure other musical inter-
with the complexity needed in handling inharmonicity, th&als. The FO relation of two notes that are one semitone apart is
harmonic summation model used to calculating FO weighfg.,1/F) = 2(/'?) ~ 1.06.
from the amplitudes of the grouped partials is very simple, asAlthough the well-tempered scale is logarithmic, it can

embodied in (8) and (9).

surprisingly accurately generate FOs that are in rational number

A spectral smoothing approach was proposed as an effiations. Table IV lists some basic musical intervals and the
cient new mechanism in multiple-FO estimation and spectr@rresponding ideal rational number relations. Intervals which
organization. The introduction of this principle corrected ampproximate simple rational number relationships are called
proximately half of the errors occurring in a system which wasarmonic or, consonantintervals, as opposed tdissonant
otherwise identical but did not use the smoothness principlatervals.

An attractive property of the iterative estimation and separa-
tion approach is that at least a couple of the most prominent FOs
can be detected even in very rich polyphonies. The probability

) S . : 1]
of errorincreases rapidly in the course of the iteration, but on the[
basis of the listening tests it was suggested that this is at least ifp)
part due to the inherent characteristics of the problem itself. The
lastiteration, i.e., estimation of the FO of the sound detected last,
accounts for approximately half of the errors in all polyphonies. [3]

The main drawback of the presented method is that it re-
quires a relatively long analysis frame in order to operate re-
liably for low-pitched sounds. This is largely due to the fact that
the processing takes place in the frequency domain where suffif]
ciently fine frequency resolution is required for harmonic series 6]
of low-pitched sounds.

The described method has been applied to the automatic trarf7]
scription of continuous music on CD recordings. Some demon-
stration signals are provided at [50]. Contrary to the musical 8
chord identification task, however, the accuracy is not compa-
rable to that of trained musicians. There are several possibilitieg®]
that can be explored as areas of future development. Integrf:!L-0
tion across multiple time frames can be used to improve perfor-
mance. While independent multiple-FO estimation in each timél1i]
frame is important for feature extraction, it does not account folel
the real experience represented in a human listener. Analogous
to the case of speech recognition in which models of words ang3]
language are used to improve performance, use of higher-level
features in music are also expected to improve music estimation
and transcription tasks.
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Automatic estimation of the meter of acoustic musical signals

Anssi P. Klapuri, Antti J. Eronen, Jaakko T. Astola
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Korkeakoulunkatu 1, FIN-33100 Tampere, Finland
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Abstract—A method is decribed which estimates the basic
pattern of beats in a piece of music, the musical meter. Analy-
sis is performed jointly at three different time scales: at the
temporally atomic fatum pulse level, at the tactus pulse level
which corresponds to the tempo of a piece, and at the musical
measure level. Acoustic signals from arbitrary musical genres
are considered. For the initial time-frequency analysis, a new
technique is proposed which measures the degree of musical
accent as a function of time at four different frequency ranges.
This is followed by a bank of comb filter resonators which per-
form feature extraction for estimating the periods and phases of
the three pulses. The features are processed by a probabilistic
model which represents primitive musical knowledge and uses
the low-level observations to perform joint estimation of the
tatum, tactus, and measure pulses. The model takes into
account the temporal dependencies between successive esti-
mates and enables both causal and noncausal estimation. The
method is validated using a manually annotated database of
474 musical signals from various genres. The method works
robustly for different types of music and improves over two
state-of-the-art reference methods in simulations.

Keywords—Acoustic signal analysis, music, musical meter
estimation, music transcription.

I. INTRODUCTION

Meter analysis is an essential part of understanding music sig-
nals and an innate cognitive ability of humans even without
musical education. Perceiving the meter can be characterized
as a process of detecting moments of musical stress (accents)
in an acoustic signal and filtering them so that underlying peri-
odicities are discovered [1], [2]. For example, tapping foot to
music indicates that a listener has abstracted metrical informa-
tion about music and, based on that, is able to predict when the
next beat will occur.

Musical meter is a hierarchical structure, consisting of pulse
sensations at different levels (time scales). Here, three metrical
levels are considered. The most prominent level is the tactus,
often referred to as the foot tapping rate or the beat. Following
the terminology of [1], we use the word beat to refer to the
individual elements that make up a pulse. A musical meter can
be illustrated as in Fig. 1, where the dots denote beats and each
sequence of dots corresponds to a particular pulse level. By the
period of a pulse we mean the time duration between succes-
sive beats and by phase the time when a beat occurs with
respect to the beginning of the piece. The tatum pulse has its

name stemming from “temporal atom” [3]. The period of this
pulse corresponds to the shortest durational values in music
that are still more than incidentally encountered. The other
durational values, with few exceptions, are integer multiples of
the tatum period and onsets of musical events occur approxi-
mately at a tatum beat. The musical measure pulse is typically
related to the harmonic change rate or to the length of a rhyth-
mic pattern. Although sometimes ambiguous, these three met-
rical levels are relatively well-defined and span the metrical
hierarchy at the aurally most important levels. 7Tempo of a piece
is defined as the rate of the tactus pulse. In order that a meter
would make sense musically, the pulse periods must be slowly-
varying and, moreover, each beat at the larger levels must coin-
cide with a beat at all the smaller levels.

The concept phenomenal accent is important for meter anal-
ysis. Phenomenal accents are events that give emphasis to a
moment in music. Among these are the beginnings of all dis-
crete sound events, especially the onsets of long pitch events,
sudden changes in loudness or timbre, and harmonic changes.
Lerdahl and Jackendoff define the role of phenomenal accents
in meter perception compactly by saying that the moments of
musical stress in the raw signal serve as cues from which the
listener attempts to extrapolate a regular pattern [1,p.17].

Automatic estimation of the meter has several applications.
A temporal framework facilitates the cut-and-paste operations
and editing of music signals. It enables synchronization with
light effects, video, or electronic instruments, such as a drum
machine. In a disc jockey application, metrical information can
be used to mark the boundaries of a rhythmic loop or to syn-
chronize two or more percussive audio tracks. Meter estima-
tion for symbolic (MIDII) data is required in time
quantization, an indispensable subtask of score typesetting
from keyboard input.

Tatum -
Tactus
Measure

96 97 98 99 100 101 102
Time (seconds)

FIG. 1. A musical signal with three metrical levels illustrated.

1. Musical Instrument Digital Interface. A standard interface for
exchanging performance data and parameters between electronic
musical devices.



A. Previous work

The work on automatic meter analysis originated from algo-
rithmic models which tried to explain how a human listener
arrives at a particular metrical interpretation of a piece, given
that the meter is not explicitly spelled out in music [4]. The
early models performed meter estimation for symbolic data,
presented as an artificial impulse pattern or as a musical score
[51, [6], [7], [8]. In brief, all these models can be seen as being
based on a set of rules that are used to define musical accents
and to infer the most natural meter. The rule system proposed
by Lerdahl and Jackendoff in [1] is the most complete, but was
described in verbal terms only. An extensive comparison of the
early models has been given by Lee in [4], and later augmented
by Desain and Honing in [9].

Parncutt has proposed a detailed and quantitative perceptual
model based on systematic listening tests [10]. Brown per-
formed metrical analysis of musical scores using an autocorre-
lation function where the notes were weighted according to
their durations [11]. Large and Kolen associated meter percep-
tion with resonance and proposed an “entrainment” oscillator
which adjusts its period and phase to an incoming pattern of
impulses, located at the onsets of musical events [12].

Rosenthal aimed at emulating the human rhythm perception
for realistic piano performances, presented as MIDI files [13].
Notable in his system was that other auditory organization
functions were taken into account, too, by grouping notes into
streams and chords. Rosenthal applied a set of rules to rank and
prune competing meter hypotheses and conducted a beam
search to track multiple hypotheses through time. The beam
search strategy was originally proposed for pulse tracking by
Allen and Dannenberg in [14].

Temperley has proposed a meter estimation algorithm for
arbitrary MIDI files, based on implementing the preference
rules verbally described in [1]. Dixon proposed a rule-based
system to track the tactus pulse of expressive MIDI perform-
ances and introduced a simple onset detector to make the sys-
tem applicable for audio signals [16]. The source codes of both
Temperley’s and Dixon’s systems are publicly available.

Cemgil and Kappen have developed a probabilistic genera-
tive model for the timing deviations in expressive musical per-
formances [24]. They used the model to infer a hidden
continuous tempo variable and quantized ideal note onset times
from observed noisy onset times in a MIDI file. Tempo track-
ing and time quantization were performed simultaneously so as
to balance the smoothness of tempo deviations versus the com-
plexity of the resulting quantized score. A similar probabilistic
Bayesian model has been independently proposed by Raphael
in [25].

Goto and Muraoka were the first to present a meter tracking
system which works to a reasonable accuracy for audio signals
[17], [18]. Only popular music was considered. The system
operates in real time and is based on an architecture where
multiple agents track alternative meter hypotheses. Beat posi-
tions at the larger levels were inferred by detecting certain
drum sounds [17] or chord changes [18]. Gouyon et al. pro-
posed a system for detecting the tatum pulse in percussive
audio tracks with constant tempo [20]. Laroche used a straight-

forward probabilistic model to estimate the tempo and swing1
of audio signals [26].

Scheirer proposed a method for tracking the tactus pulse of
music signals of any kind, provided that they had a “strong
beat” [22]. Important in Scheirer’s approach was that he did
not detect discrete onsets or sound events as a middle-step, but
performed periodicity analysis directly on the half-wave recti-
fied differentials of subband power envelopes. The source
codes of Scheirer’s system are publicly available. The meter
estimator of Sethares and Staley resembles Scheirer’s method,
with the difference that a periodicity transform was used for
periodicity analysis instead of a bank of comb filters [23].

In summary, most of the earlier work on meter estimation
has concentrated on symbolic (MIDI) data and typically ana-
lyzed the tactus pulse only. Some of the systems ([12], [16],
[24], [25]) can be immediately extended to process audio sig-
nals by employing an onset detector which extracts the begin-
nings of discrete acoustic events from an audio signal. Indeed,
the authors of [16] and [25] have introduced an onset detector
themselves. Elsewhere, onset detection methods have been
proposed that are based on using subband energies [27], an
auditory model [28], support vector machines [29], neural net-
works [30], independent component analysis [31], or complex-
domain unpredictability [32]. However, if a meter estimator
has been originally developed for symbolic data, the extended
system is usually not robust to diverse acoustic material (e.g.
classical vs. rock music) and cannot fully utilize the acoustic
cues that indicate phenomenal accents in music signals.

There are a few basic problems that a meter estimator has to
address to be successful. First, the degree of musical accentua-
tion as a function of time has to be measured. In the case of
audio input, this has much to do with the initial time-frequency
analysis and is closely related to the problem of onset detec-
tion. Some systems measure accentuation in a continuous man-
ner ([22], [23]), whereas others extract discrete events ([17],
[20], [26]). Secondly, the periods and phases of the underlying
metrical pulses have to be estimated. The methods which
detect discrete events as a middle step have often used inter-
onset interval (IOI) histograms for this purpose [16], [17], [18],
[20]. Thirdly, a system has to choose the metrical level which
corresponds to the tactus or some other specially designated
pulse level. This may take place implicitly, or using a prior dis-
tribution for pulse periods [10] or rhythmic pattern matching
[17]. Tempo halving or doubling is a symptom of failing to do
this.

B. Proposed method

The aim of this paper is to develop a method for estimating
the meter of acoustic musical signals at the tactus, tatum, and
measure pulse levels. The target signals are not limited to any
particular music type but all the main genres, including classi-
cal music, are represented in the validation database. The par-
ticular motivation for the present work is to utilize metrical
information in further signal analysis and classification, more

1. Swing is a characteristic of musical rhythms most commonly
found in jazz. Swing is defined in [26] as a systematic slight delay
of the second and fourth quarter-beats.
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FIG. 2. Overview of the meter estimation method. The two
intermediate data representations are registral accent
signals v(n) and metrical pulse strengths S(T, n).

exactly, in music transcription [33], [34].

An overview of the method is shown in Fig 2. For the time-
frequency analysis part, a new technique is proposed which
aims at measuring the degree of accentuation in acoustic sig-
nals. The technique is robust to diverse acoustic material and
can be seen as a synthesis and generalization of two earlier
state-of-the-art methods [17] and [22]. Feature extraction for
the pulse period and phase analysis is performed using comb
filter resonators very similar to those used by Scheirer in [22].
This is followed by a probabilistic model where the period-
lengths of the tactus, tatum, and measure pulses are jointly esti-
mated and temporal continuity of the estimates is modelled. At
each time instant, the periods of the pulses are estimated first
and act as inputs to the phase model. The probabilistic models
encode prior musical knowledge and lead to a more reliable
and temporally stable meter tracking. Both causal and non-
causal algorithms are presented.

This paper is organized as follows. Section II will describe
the different elements of the system presented in Figure 2.
Section IIT will present experimental results and compare the
proposed method with two reference systems. Finally,
Section IV will summarize the main conclusions and discuss
future work.

II. METER ANALYSIS MODEL

This section will describe the different parts of the meter esti-
mation method illustrated in Figure 2. Subsection A will
describe the time-frequency analysis part which produces a
measure of musical accent as a function of time. In
Subsection B, the comb filter resonators will be introduced.
Finally, Subsections C and D will describe the probabilistic
models which are used to estimate the periods and phases of
the three pulse levels.

A. Calculation of registral accent signals

All the phenomenal accent types mentioned in Introduction can
be observed in the time-frequency representation of a signal.
Although an analysis using a model of the human auditory sys-
tem would be theoretically better, we did not manage to obtain
a performance advantage using a model similar to [28] and
[35]. Also, the computational complexity of such models
makes them rather impractical.

In a time-frequency plane representation, some data reduc-
tion must take place to discard information which is irrelevant
for meter analysis. A big step forward in this respect was taken

by Scheirer who demonstrated that the perceived rhythmic con-
tent of many music types remains the same if only the subband
power envelopes are preserved and then used to modulate a
white noise signal [22]. A number of approximately five sub-
bands was reported to suffice. Scheirer proposed a method
where periodicity analysis was carried out at subbands and the
results were then combined across bands.

Although Scheirer’s method was indeed very successful, a
problem with it is that it applies primarily to music with a
“strong beat”. Harmonic changes in e.g. classical or vocal
music go easily unnoticed using only few subband envelopes.
To detect harmonic changes or note beginnings in legato1 pas-
sages, approximately 40 logarithmically-distributed subbands
would be needed?. However, this leads to a dilemma: the reso-
lution is sufficient to distinguish harmonic changes but measur-
ing periodicity at each narrow subband separately is no more
appropriate. The power envelopes of individual narrow bands
are not guaranteed to reveal the correct metrical periods, or
even to show periodicity at all, because individual events may
occupy different frequency bands.

To overcome the above problem, consider another state-of-
the-art system, that of Goto and Muraoka [17]. They detect
narrowband frequency components and sum their power differ-
entials across prefedefined frequency ranges before onset
detection and periodicity analysis takes place. This has the
advantage that harmonic changes are detected, yet periodicity
analysis takes place at wider bands.

There is a continuum between the above two approaches.
The tradeoff is: how many adjacent subbands are combined
before the periodicity analysis and how many at the later stage
when the bandwise periodicity analysis results are combined.
In the following, we propose a method which can be seen as a
synthesis of the approaches of Scheirer and Goto et al.

Acoustic input signals are sampled at 44.1 kHz rate and 16-
bit resolution and then normalized to have zero mean and unity
variance. Discrete Fourier transforms are calculated in succes-
sive 23 ms time frames which are Hanning-windowed and
overlap 50 %. In each frame, 36 triangular-response bandpass
filters are simulated. The filters are uniformly distributed on the
equivalent-rectangular bandwidth critical-band scale between
50 Hz and 20 kHz [36,p.176]. The power at each band is calcu-
lated and stored to X,(K) , where £ is the frame index and band
index b = 1,2, ...,by, with by = 36. The exact number of
subbands is not critical.

There are many potential ways of measuring the degree of
change in the power envelopes at critical bands. For humans,
the smallest detectable change in intensity, Al , is approxi-
mately proportional to the intensity | of the signal, the same
amount of increase being more prominent in a quiet signal.
That is, Al/I, the Weber fraction, is perceptually approxi-
mately constant [37,p.134]. This relationship holds for intensi-
ties from about 20 dB to about 100 dB above the absolute
threshold. Thus it is reasonable to normalize the differential of

1. A smooth and connected style of playing in which no perceptible
gaps are left between notes.

2. In this case, the center frequencies are approximately one whole
tone apart, which is the distance between e.g. the notes ¢ and d.
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power with power. This leads to [(d/ dt)x,(k)]/ X,(K), which
is equal to (d/dt)In[x,(k)] . This measures spectral change
and can be seen as an approximation of the differential of loud-
ness, since the perception of loudness for steady sounds is
rougly proportional to the sum of the log-powers at critical
bands.

The logarithm and differentiation operations are both repre-
sented in a more flexible form. A numerically robust way of
calculating the logarithm is the p-law compression

+
ik = Skl (1)
)

which performs a nonlinear mapping of X,(k) values between
zero and one to values of Yy, (k) between zero and one. The
constant [l can be used to compromize between a close-to-lin-
ear (L <0.1) and a close-to-logarithmic (1 > 1000) transfor-
mation, as illustrated in Fig3. The value g = 100 was
employed, but any value in the range [10, 10°] would be valid.

To achieve a better time resolution, the compressed power
envelopes Y, (k) are interpolated by factor two by adding zeros
between the samples. This leads to the sampling rate
f, =172 Hz. A sixth-order Butterworth lowpass filter with
fLp =10 Hz cutoff frequency is then applied to smooth the
compressed and interpolated power envelopes. The resulting
smoothed signal is denoted by z,(n) .

Differentiation of z,(n) is performed as follows. First, a
half-wave rectified differential of z,(n) is calculated as

zy(n) = HWR{z,(n) -z,(n—1)} 2
where HWR maps negative values to zero and is essential to

make the differentiation useful. Then a weighted average of
z,(n) and its differential z,'(n) is formed as

up(n) = (1=A)z,(n) +A(f,/ 1 p)z,'(N) (€)
where A = 0.8 and the factor f / f , roughly compensates for
the fact that the differential of a lowpass-filtered signal is small
in amplitude. Using the value A =0.8 instead of 1.0 has a
slight but consistent positive impact on the performance of the
overall system.

Figure 4 illustrates the described dynamic compression and
weighted differentiation steps for an artificial subband-power
signal X,(K). Although the present work is motivated purely
from the practical application point of view, it is interesting to
note that the graphs in Fig. 4 bear considerable resemblance to
the response of Meddis’s auditory-nerve model to acoustic
stimulation [38].

Finally, each my adjacent bands are linearly summed to get
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FIG. 4. llustration of the dynamic compression and
weighted differentiation steps for an artificial signal. Upper
panel shows X, (k) and the lower panel shows u,(n) .

Co = [bp/my| signals which we call “registral accent sig-
nals”

cm
ve(n) = z u,(n) ,c=1..¢. 4
b=(c-1)my+1

The registral accent signals v.(n) serve as a middle-level rep-
resentation for musical meter estimation. They represent the
degree of musical accent as a function of time at frequency
channels c. We use by = 36 and my = 9, leadingto ¢, = 4.

It should be noted that combining each m, adjacent bands at
this stage is not primarily an issue of computational complex-
ity, but improves the analysis accuracy. A prototypical meter
estimation system was used to thoroughly investigate the effect
of different values of m,. Surprisingly, it turned out that nei-
ther of the extreme values my = by or my = 1 is optimal, but
using a large number of initial channels, by > 20, and three or
four registral channels C, leads to the most reliable meter esti-
mation. Other system parameters were re-estimated in each
case to ensure that this was not merely a symptom of parameter
couplings.

The presented form of calculating the registral accent signals
is very flexible when varying W, A, by, and m. A representation
similar to that used by Scheirer in [22] is obtained by setting
p=0.1, A=1, by=6, my=1. A representation roughly similar to
that used by Goto in [17] is obtained by setting Y=0.1, A=1,
by=36, my=6. In the following, fixed values p=100, A=0.8,
by=36, my=9 are used.

B. Bank of comb filter resonators

Periodicity of the registral accent signals v.(n) is analyzed to
estimate the salience (weight) of different metrical pulse
period candidates. This resembles the idea of “registral 1or°!
computation for MIDI data in [15]. Four different period esti-
mation algorithms were evaluated. “Enhanced” autocorrela-
tion, enhanced Y/N method of de Cheveigné and Kawahara
[39], different types of comb-filter resonators [22], and banks

1. In[15], registral 101 is defined as the time-interval between
events which are within a certain range of pitch. Registral 10I
was considered as a factor of musical accentuation.



of phase-locking resonators [12]. Here enhancing refers to a
postprocessing step which is not needed in the final method
and thus not explained.

As an important observation, three of the four period estima-
tion methods performed equally well after a thorough optimi-
zation. This suggests that the key problems in meter estimation
are in measuring phenomenal accentuation and in modeling
higher-level musical knowledge, not in finding exactly the cor-
rect period estimator. The period estimation method presented
in the following was selected because it is the least complex
among the three best-performing algorithms and because it has
been earlier used in [22].

Using a bank of comb-filter resonators with a constant half-
time has been originally proposed for tactus tracking by
Scheirer [22]. Comb filters have an exponentially-decaying
impulse response where the half-time refers to the delay during
which the response decays to a half of its initial value. Output
of a comb filter with delay T is given for input v (n) as

rc(T! n) = arrc(Ti n_T)+(1_qr)Vc(n) (5)
where the feedback gain o, = 0.5" 70 is calculated based on a
selected half-time 7,,. We used Ty = 3f,, i.e., a halftime of three
seconds which is short enough to react to tempo changes but
long enough to reliably estimate pulse-periods of up to four
seconds in length. Scheirer used halftimes of 1.5-2.0 seconds
but did not attempt to track the measure pulse.

The comb filters implement a frequency response where fre-
quencies Kf /1, k = 0, ..., 1/2] have a unity response and
the maximum attenuation between the peaks is
[(1-0a.)/(1+a,)]?. Overall power y(0,) of a comb filter
with feedback gain O can be calculated by integrating over
the squared impulse response, which yields

y(ar) = (1_ar)2/(1_ar2)- (6)

A bank of such resonators was applied, with T getting values
from 1 to T,,,,,, where T,,,. = 688 corresponds to four seconds.
Computational complexity of one resonator is O(1) per each
input sample, and the overall resonator filterbank requires of
the order Cyf, T,,,4 Operations per second, which is not compu-
tationally too demanding for a real-time application.

Instantaneous energies (T, N) of each comb filter in chan-
nel ¢ at time # are calculated as

. 1 .
fo(tin) = 257 (L )Z, ()
These are then normalized to obtain
1 fo(tT, n)
’ = ~ - 1/ | 8
SO0 = | T () ®)

where V,(n) is the energy of the registral accent signal v (n),
calculated by squaring v (n) and by applying a leaky integra-
tor, i.e., a resonator which has T=1 and the same half-time as
the other resonators. Normalization with y(0,) is applied to
compensate for the differences in the overall power responses
for different a. The proposed normalization is advantageous
because it preserves a unity response at the peak frequencies
and at the same time removes the T-dependent trend for a
white-noise input.

Figure 5 shows the resonator energies f.(T, n)/ V. (n) and
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FIG. 5. Resonator energies for an impulse train with a
period-length of 24 samples (left) and for white noise
(right). Upper panels show the energies (T, n) and the
lower panels normalized energies S (T, n).

the normalized energies S.(T,n) for two types of artificial
input V,(n), an impulse train and a white-noise signal. It is
important to notice that all resonators that are in rational-
number relations to the period of the impulse train (24 sam-
ples) show response to it. In the case of an autocorrelation
function, for example, only integer multiples of 24 come up
and an explicit postprocessing step (“enhancing”) was neces-
sary to generate responses to the subharmonic lags and to
achieve the same meter estimation performance. This step is
not needed for the comb filter resonators.

Finally, a function S(T, n) which represents the overall sali-
ences of different metrical pulses at time 7 is obtained as

C
s(t,n) = zc": (T n). Q)
This function acts as the observation for the probabilistic
model that estimates the pulse periods.
For tatum period estimation, the discrete power spectrum
S( f, n) of s(t, n) is calculated as
: 2
S(f,n=f 'éXZ:m:a?l[s(T' n)Z(T)e—an (T—l)/Tmax] (10)
where the emphasis with f removes spectral trend and the win-
dow function {(t) is half-Hanning
(t) = 0.5{1—cos[TU( Tyt T—1)/Tnad} - (11)
Frequencies above 20 Hz can be discarded from S( f, n). The
rationale behind calculating the discrete Fourier transform
(DFT) in (10) is that, by definition, other pulse periods are inte-
ger multiples of the tatum period. Thus the overall function
s(T, n) contains information about the tatum and this is con-
veniently gathered for each tatum frequency candidate f using
the DFT as in (10). Gouyon et al. used an IOI histogram and
Mabher’s two-way mismatch procedure for the same purpose
[20], [21]. Their idea was to find a tatum period which best
explains the harmonically-related peaks in the histogram.
It should be noted that the observation (T, n) and its spec-
trum S( f, N) are zero-phase, meaning that the phases of the
pulses at different metrical levels have to be estimated using



some other source of information. As will be discussed in
Subsection D, the phases are estimated based on the states of
the comb filters, after the periods have been solved first.

C. Probabilistic model for pulse periods

Period-lengths of the metrical pulses can be estimated inde-
pendently of their phases and it is reasonable to compute the
phase only for the few winning periods. Thus the proposed
method finds periods first and then the phases (see Fig. 2).
Although estimating the phases is not trivial, the search prob-
lem is largely completed when the period-lengths have been
found.

Musical meter cannot be assumed to be static over the dura-
tion of a piece. It has to be estimated causally at successive
time instants and there must be some temporal tying between
the successive estimates. Also, the dependencies between dif-
ferent metrical pulse levels have to be taken into account. This
requires prior musical knowledge which is encoded in the
probabilistic model to be presented.

For period estimation, a hidden Markov model that describes
the simultaneous evolution of four processes is constructed.
The observable variable is the vector of instantaneous energies
of the resonators, S(T, n), denoted s, in the following. The
unobservable processes are the tatum, tactus, and measure peri-
ods. The corresponding hidden variables are the tatum period
T/, tactus period T8, and measure period TS . As a mnemonic
for this notation, recall that the tatum is the temporally atomic
(A) pulse level, tactus pulse is often called “beat” (B), and
musical measure pulse is related to the harmonic (i.e., chord)
change rate (C). For convenience, we use q, = [],K,I] to
denote a “meter state”, equivalent to T/ = j, T8 = Kk, and
1$ = |. The hidden state process is a time-homogenous first-
order Markov which has an initial state distribution P(g;) and
transition probabilities P(qn\qn_ 1) - The observable variable is
conditioned only on the current state, i.e., we have the state-
conditional observation densities p(Sn‘qn) )

The joint probability density of a state sequence
Q = (0;0,-.-qy) and observation sequence O = (S;S,...Sy)
can be written as

N

P(Q O) = P(dy)p(sy|dy) I_l P(0n|0h—1) P(Sh[Tn) . (12)
n=2

where the term P(qn‘ 0,_1) can be decomposed as

CRER . (13)
= P(TnB‘Qn—l)P(TmTr?i qn—l)P(Tr?‘Tr?’ TﬁA! qn—l)
It is reasonable to assume that
P(T[?‘TnBITﬁA! qn—j_) = P(TE‘TE! qn—l)a (14)

i.e., given the tactus period, the tatum period does not give
additional information regarding the measure period. We fur-
ther assume that given T{) , , the other two hidden variables at
time n—1 give no additional information regarding T{) . Here
i O{A, B, G .It follows that (13) can be written as

P(qn‘qn—l)
= P(TR|TR_)P(TR| TR TR )P(TR TR Th-1)
Using the same assumptions, P(Q;) is decomposed and sim-
plified as

(15)

Sn+1

Sh-1 Sh

FIG. 6. Hidden markov model for the temporal evolution
of the tatum, beat, and measure pulse periods.

P(ay) = P(TB)P(TA|TP)P(TE[TE). (16)

The described modeling assumptions lead to a structure
which is represented as a directed acyclic graph in Figure 6.
The arrays in the graph represent conditional dependencies
between the variables. The circles denote hidden variables and
the observed variable is marked with boxes. The tactus pulse
has a central role in meter perception and it is not by chance
that the other two variables are drawn to depend on it. The
assumption in (14) is not valid if the variables are permuted.

1. Estimation of the state-conditional observation likeli-
hoods

The remaining problem is to find reasonable estimates for the
model parameters, i.e., for the probabilities that appear in (12)-
(16). In the following, we ignore the time indeces for a while
for simplicity. The state-conditional observation likelihoods
p(s|q) are estimated from a database of musical recordings
where the musical meter has been hand-labeled. However, the
data is very limited in size compared to the number of parame-
ters to be estimated. Estimation of the state densities for each
different g = [j, K, 1] is impossible since each of the three dis-
crete hidden variables can take on several hundreds of different
values. By making a series of assumptions we arrive at the fol-
lowing approximation for p(s|q):

p(sjq =[], k,1]) O s(Ks(1)S(1/]). (17)
Appendix A presents the derivation of (17) and the underlying
assumptions in detail. An intuitive rationale of (17) is that a
truly existing tactus or measure pulse appears as a peak in S(T)
at the lag that corresponds to the pulse period. Analogously, the
tatum period appears as a peak in S( f) at the frequency that
corresponds to the inverse of the period. The product of these
three values correlates approximately linearly with the likeli-
hood of the observation given the meter.

2. Estimation of the transition and initial probabilities
In (15), the term P(T/|T8, TA_;) can be decomposed as
P(TA, TR| A1)
P(TA[TA )P(TR|Th ) ’

P(TR TR, Tho1) = P(TR|TA L)

(18)
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where the first term represents transition probabilities between
successive period estimates and the second term represents the
relation dependencies of simultaneous periods (TA and TP),
independent of their actual frequencies of occurrence (in prac-
tice TB tends to be integer multiple of TA). Similarly, we write

P(1%, T8|15-1)
P(T8|te_)P(TR|TE 1)
The transition probabilities P(t{)|T{);) between succes-
sive period estimates are obtained as follows. Again, the
number of possible transitions is too large for any reasonable
estimates to be obtained by counting occurrences. The transi-
tion probability is modeled as a product of the prior probability
for a certain period, P(t{)), and a term f(t{)/t{),) which

describes the tendency that the periods are slowly-varying:

P(t, 18)4) 0o
_— N .20
pamPy L O

where i O { A, B, G . The function f,

P(TS|t8 15_1) = P(T§|T5_1) (19)

P(t|T{),) = P(t()
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implements a normal distribution as a function of the logarithm
of the ratio of successive period values. It follows that the like-
lihood of large changes in period is higher for long periods,
and that period doubling and halving are equally probable. The
parameter 0, = 0.2 was found by monitoring the perform-
ance of the system in simulations. The distribution (21) is illus-
trated in Fig. 7.

Prior probabilities for tactus period lengths, P(1B), have
been measured from actual data by several authors [10], [40].
As suggested by Parncutt in [10], we apply the two-parameter
lognormal distribution to model the prior densities:

: 1 o 1 DT()D C
1)) = - 22
p(t®) r(i)c(i)ﬁe)(p% 2(0(,))2[ WE}D’ (22)

where m() and o() are the scale and shape parameters,
respectively. For the tactus period, the values mB = 0.55 and
oB = 0.28 were estimated by counting the occurrences of dif-
ferent period lengths in our hand-labeled database (see Sec. III)
and by fitting the log-normal distribution to the histogram data.
Figure 8 shows the period-length histograms and the corre-
sponding lognormal distributions for the tactus, measure, and
tatum periods. The scale and shape parameters for the tatum
and measure periods are mA = 0.18, oA = 0.39, m®¢ = 2.1,
and o€ = 0.26, respectively. These were estimated from the
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FIG. 8. Period-length histograms and the corresponding
lognormal distributions for tatum, tactus, and measure pulses.
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FIG. 9. Distribution g(x) which models the relation
dependencies of simultaneous periods (see (25)).

hand-labeled data in the same way.
The relation dependencies of simultaneous periods are mod-
eled as follows. We model the latter terms in (18)—(19) as

PATET) e
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where g(X) is a Gaussian mixture density of the form
9
90 = 5 _ WiN(xl 05), (25)

where W, are the component weights and sum to unity, / are the
component means, and 0, = 0.3 is the common variance. The
function models the relation dependencies of simultaneous
periods, independent of their actual frequencies of occurrence.
The exact weight values are not critical, but are designed to
realize a tendency towards binary or ternary integer relation-
ships between concurrent pulses. For example, it is quite prob-
able that one tactus period consists of two, four, or six tatum
periods, but multiples five and seven are much less likely in
music and thus have lower weights. The distribution g(X) is
shown in Fig. 9. The weights were obtained by first assigning
them values according to a musical intuition. Then the dynamic
range of the weights was found by raising them to a common
power which was varied between 0.1 and 10. The value which
performed best in small-scale simulations was selected.
Finally, small adjustments to the values were made.

3. Finding the optimal sequence of period estimates
Now we must obtain an estimate for the unobserved state vari-



ables given the observed front-end data and the model parame-
ters. We do this by finding the most likely sequence of state
variables Q = (q,0,...qy) given the observed front-end data
O = ($;S,...Sy) - This can be straighforwardly computed
using the Viterbi algorithm widely applied in speech recogni-
tion [41]. Thus, we seek the sequence of period estimates,

Q= arngX[p(Q, O]

where p(Q, O) denotes the joint probability density of the
hidden and observed variables, as defined in (12).
For the Viterbi-decoding, we need to define the quantity

max p(q,...q,_q, 9,= [,k 1], s;-..8,),(27)
G191

which is the best score along a single path at time 7, which
takes into account the first #» observations and ends in state
d, = [i.k, 1] . By induction we then compute

(26)

o,(i.k,1) =

On+1(l, K1) = P(Shea|On+1= [ K1) (28)

O [on(", K 1) P(An 4= LK, 1T as= [0 KL D]

In a causal model, the meter estimate (], at time 7 is deter-
mined according to the end-state of the best partial path at that
point in time. A noncausal estimate after seeing a complete
sequence of observations can be computed using backward
decoding, and

max [3,(], k, )] = max[p(Q. O)] .
k, I Q

(29)

The inequality is due to “pruning” some of the path candidates
by evaluating only a subset of best path candidates at each time
instant, and thus the resulting path is not necessarily the global
optimum. However, in practice the difference is small. Evaluat-
ing all the possible path candidates would be computationally
very demanding. Therefore, we apply a suboptimal beam-
search strategy, and evaluate only a predefined number of the
most promising path candidates at each time instant. The selec-
tion of the most promising candidates is made using a greedy
selection strategy. Once in a second, we select independently
K best candidates for the tatum, tactus, and measure periods.
The number of candidates K = 5 was found to be safe and
was used in simulations. The selection is made by maximizing
P(TO)P(sy|TM) for i = {A, B, G . After selecting the best
candidates for each, we need only to compute the observation
likelihoods for K3 = 125 meter candidates, i.e., for the differ-
ent combinations of the tatum, tactus, and measure periods.
This is done according to Eq (17) and the results are stored into
a data vector. The transition probabilities are computed using
Eq. (15) and stored into a 125-by-125 matrix. These data struc-
tures are then used in the Viterbi algorithm.

D. Phase estimation

The phases of the three pulses are estimated at successive time
instants, after the periods have been decided at these points. We
use T, i O{A, B, G to refer to the estimated periods of the
tatum, tactus, and measure pulses at time 7, respectively. The
corresponding phases of the three pulses, ¢ (), are expressed as
“temporal anchors”, i.e., time values when the nearest beat unit

Channel c
PN WS

18.8 19 19.2 19.4
Time (seconds)

18.6

FIG. 10. The rectangle indicates the observation matrix R?
for tactus phase estimation at time n (here period T8 is
0.51 s.). Dashed line shows the correct phase in this case.

occurs with respect to the beginning of a piece. Periods and
phases, T{) and ¢ (), completely define the meter at time n.

In principle, the phase of the measure pulse, ¢, determines
the phase of all the three levels. This is because in a well-
formed meter, each measure-level beat must coincide with a
beat at all the lower metrical levels. However, determining the
phase of the measure pulse is difficult and turned out to require
pattern recognition techniques, whereas tactus phase estima-
tion is more straightforward and robust. We therefore propose a
model where the tactus and measure phases are estimated sepa-
rately using two parallel models. For the tatum pulse, phase
estimation is not needed but the tactus phase can be used.

Scheirer has proposed using the state vectors of comb filters
to determine the phase of the tactus pulse [22]. This is equiva-
lent to using the latest T outputs of a resonator with delay T .
We have resonators at several channels ¢ and, consequently, an
output matrix r (T, j) where ¢ = 1,2, ...,¢, is the channel
index and the phase index j takes on values between N—T1T + 1
and »n when estimation is taking place at time n. For conven-
ience, we use R() to denote the output matrix r(1{), j) of a
found pulse period {) and the notation (R(") ; to refer to
the individual elements of R(). The matrix R() acts as the
observation for phase estimation at time #.

Fig. 10 shows an example of the observation matrix RE
when tactus phase estimation is taking place 20 seconds after
the beginning of a piece. The four signals at different channels
are the outputs of the comb filter which corresponds to the esti-
mated tactus period T8 =0.51 seconds. The output matrix RE
contains the latest 0.51 seconds of the output signals, as indi-
cated with the rectangle. The correct phase value $B has been
marked with a dashed line. As discussed in Sec. I1.B, comb fil-
ters implement a “harmonic” frequency response and therefore
the outputs show clear periodicity with period 8.

Two separate hidden Markov models are evaluated in paral-
lel, one for the tactus phase and another for the measure phase.
No joint estimation is attempted. The two models are very sim-
ilar and differ only in how the state-conditional observation
densities are defined. In both models, the observable variable is
the output matrix R{) of the resonator T{) which corresponds
to the found pulse period. The hidden variable is the phase of
the pulse, (), taking on values between Nn—1{() +1 and n.
The hidden state process is a time-homogenous first-order
Markov which has an initial state distribution P(¢,) and tran-
sition probabilities P(¢n\¢n—1)- The observable variable is
conditional only on the current state, thus we have the state-



conditional observation densities p(R{"|¢ ).

Again, the remaining problem is to find reasonable estimates
for the model parameters. State-conditional observation likeli-
hoods p(RE|$f) for the tactus pulse are approximated as

Co
P(RE[0B =)0 T (Co—c+ 2)(RE), . (30)
c=1

It is, the likelihood is proportional to a weighted sum of the
resonator outputs across the channels. The exact weights of the
different channels are not critical. Across-band summing is
intuitively meaningful and earlier used in [22] and [35].
Emphasizing the low frequencies is motivated by the “stable
bass” rule, as stated by Lerdahl and Jackendoff in [1], and
improved the robustness of phase estimation in simulations.

For the purpose of estimating the measure pulse phase, a for-
mula for the state-conditional observation likelihoods analo-
gous to that in (30) is derived, but so that different channels are
weighted and delayed in a more complex manner. It turned out
that pattern matching of some form is necessary to analyze
music at this time scale and to estimate the measure phase ¢ ¢
based on the output matrix RS . It is, no simple formula such as
(30) exists. In the case that the system would have access to the
pitch content of an incoming piece, the points of harmonic
change might serve as cues for estimating the measure phase in
a more straightforward manner. However, this remains to be
proved. Estimation of the higher-level metrical pulses in audio
data has been carlier attempted by Goto and Muraoka, who
resorted to pattern matching [17] or to straightforward chord
change detection [18]. The method presented in the following
is the most reliable that we found.

First, a vector h,(I) is constructed as

G 3
h(1) = Z Z nc,k(Rr(l:)c,j(k,l,n)’ €2y
c=1k=0
where
I =01,..,15-1, (32)
ik, 1,n) = +1+% modTﬁ%, (33)

and (x mod y) denotes modulus after d1v151on. Scalars n  are
weights for the resonator outputs at channels ¢ and with delays
k. The weights N\ encode a typical pattern of energy fluctua-
tions withing one measure period and are estimated so that the
maximum of h,(I) indicates the measure phase. Two univer-
sally applicable patterns n{1} and n{? were found, leading to
the corresponding vectors h(l)(l) and h{@(l). The values of
these matrices are given in Appendix B. Both patterns can be
characterized as a pendulous motion between a low-frequency
event and a high-intensity event. The first pattern can be sum-
marized as “low, loud, —, loud”, and the second as “low, —
, loud, —”. The two patterns are combined into a single vector
to perform phase estimation according to whichever pattern
matches better to the data

h@2(1) = max{h@® (1), h@ (1)} . (34)

The state-conditional observation likelihoods are then defined
as

P(RS[S = j) O h(h2(j - (n-1§ + 1)). (35)

Other pattern matching approaches were evaluated, too. In
particular, we attempted to sample RC at the times of the tac-
tus beats and to train statistical classifiers to choose the beat
which corresponds to the measure beat (see [42] for further
elaboration on this idea). However, the methods were basically
equivalent to that described above, yet less straightforward to
implement and performed slightly worse.

Transition probabilities P(¢{"[¢{);) between successive
phase estimates are modeled as follows. Given two phase esti-
mates (i.e., beat occurrence times), the conditional probability
which ties the successive estimates is assumed to be normally
distributed as a function of a prediction error e which measures
the deviation of ¢{) from a predicted next beat occurence time
given the previous beat time ¢ (), and the perlod T

PO, 36
(0] o ﬁ PO 2035 (36)
where
1 . , () 1 160
e = Wﬁ%q,g)_q;gll +7%modrg')]—7%, (37)

and g3 = 0.1 is common for i O {B, C} . In (37), it should be
noted that none or several periods may elapse between ¢ )
and ¢ . The initial state distribution P(¢,) is assumed to be
uniformly distributed, i.e., P(¢{) = j) = 1/1() forall;.

Using (30), (35), and (36), causal and noncausal computa-
tion of phase is performed using the Viterbi algorithm as
described in Sec II.C. Fifteen phase candidates for both the
winning tactus and the winning measure period are generated
once in a second. The candidates are selected in a greedy man-
ner by picking local maxima in p(R(’|¢{) = j). The corre-
sponding probability values are stored into a vector and
transition probabilities between successive estimates are com-
puted using (36).

E. Sound onset detection and extrametrical events

Detecting the beginnings of discrete acoustic events one-by-
one has many uses. It is often of interest whether an event
occurs at a metrical beat or not, and what is the exact timing of
an event with respect to its ideal metrical position. Also, in
some musical pieces there are extrametrical events, such as #ri-
plets, where an entity of e.g. four tatum periods is exception-
ally divided into three parts, or grace notes which are pitch
events that occur a bit before a metrically stable event.

In this paper, we used an onset detector as a front-end to one
of the reference systems (designed for symbolic MIDI input) to
enable it to process acoustic signals. Rather robust onset detec-
tion is achieved by using an overall accent signal v(n) which
is computed by setting m, = by in (4). Local maxima in v(n)
represent onset candidates and the value of v(n) at these
points reflects the likelihood that a discrete event occurred. A
simple peak-picking algorithm with a fixed threshold level can
then be used to distinguish genuine onsets from the changes
and modulations that take place during the ringing of a sound.



Table 1: Statistics of the evaluation database.

# Pieces with annotated metrical pulses
Genre
tatum tactus measure
Classical 69 84 0
Electronic / dance 47 66 62
Hip hop / rap 22 37 36
Jazz / blues 70 94 71
Rock / pop 114 124 101
Soul / RnB / funk 42 54 46
Unclassified 12 15 4
Total 376 474 320
III. RESULTS

This section will look at the performance of the proposed
method in simulations. The results will be compared with those
of two reference systems. The distribution of errors will be
analyzed and the importance of different processing elements
will be validated.

A. Experimental setup

Table 1 shows the statistics of the database that was used to
evaluate the accuracy of the proposed meter estimation method
and the two reference methods. Musical pieces were collected
from CD recordings, downsampled to a single channel, and
stored to a hard disc using 44.1 kHz sampling rate and 16 bit
resolution. The database was created for the purpose of musical
signal classification in general, and the balance between genres
is according to an informal estimate of what people listen to.

The metrical pulses were manually annotated for approxi-
mately one-minute long excerpts which were selected to repre-
sent each piece. Tactus and measure pulse annotations were
made by a musician who tapped along with the pieces. The tap-
ping signal was recorded and the tapped beat times were then
detected semiautomatically. The tactus pulse could be anno-
tated for 474 of a total of 505 pieces. The measure pulse could
be reliably marked by listening for 320 pieces. In particular,
annotation of the measure pulse was not attempted for classical
music without the musical scores. Tatum pulse was annotated
by the first author by listening to the pieces together with the
annotated tactus pulse and by determining the integer ratio
between the tactus and the tatum period lengths. The integer
ratio was then used to interpolate the tatum beats between the
tapped tactus beats.

Evaluating a meter estimation system is not trivial. The issue
has been addressed in depth by Goto and Muraoka in [19]. As
suggested in [19], we use the longest continuous correctly esti-
mated segment as a basis for measuring the performance. This
means that one inaccuracy in the middle of a piece leads to
50 % performance. The longest continuous sequence of correct
pulse estimates in each piece is sought and compared to the
length of the segment which was given to be analyzed. The
ratio of these two lengths determines the performance rate for
one piece and these are then averaged over all pieces. However,
prior to the meter analysis, all the algorithms under considera-
tion were given a four-second “build-up period” in order to
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make it theoretically possible to estimate the correct period

immediately from the beginning of the evaluation segment.

Also, it was taken care that any of the input material did not

involve tempo discontinuities. More specifically, the interval

between two tapped reference beat times (pulse period) does
not change more than 40% at a time, between two successive
beats. Other tempo fluctuations were naturally allowed.

A correct period estimate is defined to deviate less than
17.5 % from the annotated reference and a correct phase to
deviate from an annotated beat time less than 0.175 times the
annotated period length. This precision requirement has been
suggested in [19] and was found appropriate here since inaccu-
racies in the manually tapped beat times allow meaningful
comparison of only up to that precision. However, for the
measure pulse, the period and phase requirements were tight-
ened to 10 % and 0.1, because the measure period-lengths are
large and thus more accurate evaluation is possible — and also
necessary as will be seen. For the tatum pulse, tactus phase is
used and thus the phase is correct always when the tactus phase
is correct, and only the period has to be considered separately.

Performance rates are given for three different criteria [19]:
e “Correct”: A pulse estimate at time # is accepted if both its

period and phase are correct.

*  “Accept d/h”: A pulse estimate is accepted if its phase is
correct and the period matches either 0.5, 1.0, or 2.0 times
the annotated reference. It is, period doubling or halving is
accepted but the factor must not change within the continu-
ous sequence. Correct meter estimation takes place, but a
wrong metrical level is chosen to be e.g. the tactus pulse.

*  “Period correct”: A pulse estimate is accepted if its period
is correct. Phase is ignored. For tactus, this is interpreted as
the tempo estimation performance.

Which is the single best number to characterize the perform-
ance of a pulse estimator? This was investigated by auralizing
meter estimation results. It was observed that temporal conti-
nuity in producing correct estimates is indeed aurally impor-
tant. Secondly, phase errors are very disturbing. Third, period
doubling or halving is not very disturbing. Tapping consistently
twice too fast or slow does not matter much. Moreover, select-
ing the correct metrical level is in some cases ambiguous even
for a human listener, especially in the case of the tatum pulse.
In summary, it appears that the “accept d/h” criterion gives a
single best number to characterize the performance of a sys-
tem.

B. Reference systems

To put the results in perspective, two reference methods are
used as a baseline in simulations. This is essential because the
principle of using a continuous sequence of correct estimates
for evaluation gives a somewhat pessimistic picture of the
absolute performance.

The methods of Scheirer [22] and Dixon [16] are very differ-
ent, but both systems represent the state-of-the-art in tactus
pulse estimation and their source codes are publicly available.
Here, the used implementations and parameter values were
those of the original authors. However, for Scheirer’s method,
some parameter tuning was made which slightly improved the
results. Dixon developed his system primarily for MIDI-input,



Table 2: Tactus estimation performance (%) of different methods.

Continuity required Individual estimates
Method accept | period accept | period
correct d/hp ?orrect correct d/hp (r:)orrect
Causal 57 68 74 63 78 76
Noncausal 59 73 74 64 80 75
Scheirer [22]| 27 31 30 48 69 57
Dixon [16] 7 26 10 15 53 25
O + Dixon 12 39 15 22 63 30

Table 3: Meter estimation performance for the proposed method.

Continuity required | Individual estimates
Method | Pulse accept | period accept | period
correct d/hp (Iforrect correct d/hp (Iforrect
Causal tatum 44 57 62 51 72 65
tactus 57 68 74 63 78 76
measure | 42 48 78 43 51 81
Non- tatum 45 63 62 52 74 65
causal | tactus 59 73 74 64 80 75
measure | 46 54 79 47 55 81

and provided only a simple front-end for analyzing acoustic
signals. Therefore, a third system denoted “O + Dixon” was
developed where an independent onset detector (described in
Sec. II.LE), was used prior to Dixon’s tactus analysis. System-
atic phase errors were compensated for in both methods.

C. Experimental results

In Table 2 the tactus tracking performance of the proposed
causal and noncausal algorithms is compared with those of the
two reference methods. As the first observation, it was noticed
that the reference methods did not maintain the temporal conti-
nuity of acceptable estimates. For this reason, the performance
rates are also given as percentages of individual acceptable
estimates (right half of Table 2). Dixon’s method has difficul-
ties in choosing the correct metrical level for tactus, but per-
forms well according to the “accept d/h” criterion when
equipped with the new onset detector. The proposed method
outperforms the previous systems in both accuracy and tempo-
ral stability.

Table 3 shows the meter estimation performance for the pro-
posed causal and noncausal algorithms. As for human listeners,
meter estimation seems to be easiest at the tactus pulse level.
For the measure pulse, period estimation can be done robustly
but estimating the phase is difficult. A reason for this is that in
a large part of the material, two rhythmic patterns elapse within
one measure period, and the system has difficulties in choosing
which one is the first. In the case that Tephase errors (each beat
is displaced by a half-period) would be accepted, the perform-
ance rate would be essentially the same as for the tactus. How-
ever, Tphase errors are disturbing and should not be accepted.

For the tatum pulse, in turn, deciding the period is difficult.
This is because the temporally atomic pulse rate typically
comes up only occasionally, making temporally stable analysis
hard to attain. The method often has to halve its period hypoth-
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FIG. 11. Performance within different musical genres. The
“accept d/h” (continuity required) percentages are shown for
the tatum (white), tactus (gray), and measure (black) pulses.
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FIG. 12. Relative occurrence frequencies of different phase
deviations from the reference phase. The deviation is
measured in relation to the period length for the tactus (left)
and measure pulse (right).

esis when the first rapid event sequence occurs. This appears in
the performance rates so that the method is not able to produce
a consistent tatum period over time but alternates between e.g.
the reference and double the reference. This degrades the tem-
porally continuous rate, although the “accept d/h” rate is very
good for individual estimates. The produced errors are not very
disturbing when listening to the results.

Figure 11 shows the “accept d/h” (continuity required) per-
formance rates for different musical genres. For classical
music, the proposed method is only moderately successful,
although e.g. the tactus rate still outperforms the performance
of the reference methods for the whole material. However, this
may suggest that pitch analysis would be needed to analyze the
meter in classical music. In jazz music, the complexity of
musical thythms is higher on the average and the task thus
harder.

In Figure 12, the temporal precision of the proposed method
is illustrated. We measured the time deviation of accepted
phase estimates from the annotated beat times. The deviation is
expressed in relation to the annotated period-length. The histo-
gram shows the distribution of deviation values. It should be
noted that the reference tapping is not absolutely accurate, but
the histogram reflects inaccuracies in both. For the measure
pulse, the histogram is quite exactly a 3.8-times narrower copy
of that for the tactus. Thus the absolute time deviations are
roughly the same, suggesting that they are mostly due to the
reference tapping. The dashed line in the right-hand side histo-
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FIG. 13. Histogram of period-estimation errors for tatum,
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Table 4: Meter estimation performance (%) for different system

configurations
Require continuity, | Individual estimates,
Method accept d/h accept d/h
tatum | tactus [measure| tatum | tactus [measure
0. Baseline 62 | 73 | 54 | 74 | 80 | 55
1. No joint estim. 58 68 49 71 75 50
2. No temporal proc. | 45 54 31 72 77 50
3. Neither of the two | 41 50 25 70 72 44

gram shows the histogram if deviations of up to 0.175 times the
period would be accepted for the measure pulse. It is, rhythmi-
cally confused phase estimates would be accepted. Therefore, a
higher precision (0.1) was required for the measure phase.

Figure 13 shows histograms where the ratio of the estimated
period and the annotated period was measured. As can be seen,
almost all period estimation errors are either half or double the
correct period. In the case that the phase is ignored, 83 %
(tatum), 88 % (tactus), and 91 % (measure) of the period esti-
mates are either correct, half, or double the reference period.
The fact that the measure pulse could not be annotated for clas-
sical music explains why the measure period estimation rate is
higher than that of the tactus.

D. Importance of different parts

Table 4 gives the performance rates for different system config-
urations. Different elements of the proposed model were disa-
bled in order to evaluate their importance. In each case, the
system was kept otherwise fixed. The baseline method is the
noncausal system, as in Table 3.

In the first test, the dependencies between the different pulse
levels were broken by using a non-informative (flat) distribu-
tion for g(x) in (25). This slightly degrades the performance in
all cases. In the second test, the dependencies between tempo-
rally successive estimates were broken by using a non-informa-
tive distribution for the transition probabilities between
successive period and phase estimates, P(t{"|t(),_;) and
P(¢$7|9{2,), respectively. This degrades the temporal stabil-
ity of the estimates considerably and hence collapses the per-
formance rates which use the longest continuous correct
segment for evaluation. In the third case, the both types of
dependencies were broken. The system still performs moder-
ately, indicating that the initial time-frequency analysis method
and the comb-filter resonators provide a rather high level of
robustness as such.
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IV. CONCLUSIONS

A method has been described which can successfully estimate
the meter of acoustic musical signals. Musical genres of very
diverse types can be processed with a common system configu-
ration and parameter values. For most musical material, rela-
tively low-level acoustic information can be used, without the
need to model the higher-level auditory functions such as
sound source separation or multipitch analysis.

Similarly to human listeners, computational meter estima-
tion is easiest at the tactus pulse level. For the measure pulse,
period estimation can be done equally robustly but estimating
the phase is less straightforward. Either pattern recognition
techniques or pitch analysis seems to be needed to analyze
music at this time scale. For the tatum pulse, in turn, phase esti-
mation is not difficult at all, but deciding the period is very dif-
ficult for both humans and a computational algorithm. This is
because the temporally atomic pulse rate typically comes up
only occasionally. Thus causal processing is difficult and it is
often necessary to halve the tatum hypothesis when the first
rapid event sequence occurs.

The critical elements of a meter estimation system appear to
be the initial time-frequency analysis part which measures
musical accentuation as a function of time and the (often
implicit) internal model which represents primitive musical
knowledge. The former is needed to provide robustness for
diverse instrumentations in e.g. classical, rock, or electronic
music. The latter is needed to achieve temporally stable meter
tracking and to fill in parts where the meter is only faintly
implied by the musical surface. A challenge in the latter part is
to develop a model which is generic for various genres, for
example for jazz and classical music. The proposed model
describes sufficiently low-level musical knowledge to general-
ize over different genres.

The presented method enables both causal and noncausal
processing within the same model. The backward decoding
strategy in the Viterbi algorithm acts as a satisfying counterpart
of a phenomenon called revision in human perception. Here
revision refers to the manner in which the interpretation of pre-
vious material is affected by what happens afterwards. Back-
ward decoding at successive time instants is not
computationally demanding and gives a retrospective estimate
over the whole history up to that point.

APPENDIX A: DERIVATION OF OBSERVATION DENSITIES

This appendix presents the derivation and underlying assump-
tions in the estimation of the state-conditional observation like-
lihoods p(s|g). We first assume the realizations of TA
independent of the realizations of T8 and 1€:

P(s|tA=j,1B=k 1¢=1)

OP(s|tB =k 1€ =1)P(s|TA = ))
This violates the dependencies of our model but significantly
simplifies the computations and makes it possible to obtain rea-
sonable estimates. Furthermore, tatum information is most
clearly visible in the spectrum of the resonator outputs, thus we
use

(38)

P(s|th=j) = P(S[T4 =), (39)



where § is the spectrum of s, according to (10). We further
assume the components of s and .S to be conditionally inde-
pendent of each other given the state, and write

P(s|tB =k 1€ =)P(S|1A = ]) (40)

T T

[ P(SCK)[T8 =k, 1€ = 1) [ P(S(1/J)[TA = )
k=1 =1
It is reasonably safe to make two more simplifying assump-

tions. First, we assume that the height of s and § at the lags cor-
responding to a period actually present in the signal depend
only on the particular period, not on other periods. Second, the
value at a lag where there is no period present in the signal is
independent of the true periods 18, 1€, and 1A, and is domi-
nated by the fact that no period corresponds to that particular
lag. Hence, (40) can be written as

P(sla=T[j.k.1])
= P(s(K[t® = K)P(s([T¢ = |)
P DIA =D ] P )\TA?‘ i

i#]

where P(S(T)|TB = 1) denotes the probability of value s(T)

given that T is a tactus pulse period and P(S(T)|tB#T)

denotes the probability of value S(T) given that T is not a tac-
tus pulse period. These conditional probability distributions
(tactus, measure, and tatum each have two distributions) were
approximated by discretizing the value range of s(1) O[O0, 1]

and by calculating a histogram of S(T) values in the cases that
T is or is not an annotated metrical pulse period.

Then, by defining

B(s) = ﬁ}%qkwﬂr0¢w FTP%%@

Equation (41) can be written as

P(sla=1[j.k,1]) = B(s)

o PERTE=K) P(s(h[T€=1) P(1/j)[TA= )

P(s(K|T5 1€ 2 K)P(s(D T8 1€ 2 ) P(S(1/])[14# ])
where the scalar 3(S) is a function of s but does not depend on
q.

By using the two approximated histograms for tactus, meas-
ure, and tatum, each of the three terms of the form
P(s(t)[T® = 1)/P(s(1) |1 £ 1) in (43) can be represented
as a single discrete histogram. These were modeled as first
order polynomials. The first two terms depend linearly on the
value S(T) and the last term depends linearly on the value
S(1/71) . Thus we can write

p(sia =[],k 11) Os(Ks()S(1/]). (44)
The histograms could be more accurately modeled with third-

order polynomials, but this did not bring performance advan-
tage over the simple linear model in (44).

max

(41)
P(s( K)|TB, 1€ £ k')

TAZ jD 42)

43)

APPENDIX B

Numerical values of the matrices used in Sec. I1.D:
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1210057 1001413
n(y = | 020020 o _ 002808 (4
0 30030 0 04312
0 400 40 0 05815

where channel ¢ determines the row and delay & the column.
The first row correspond to the lowest-frequency channel.
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